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ABSTRACT 

This paper presents results from the application of a comprehensive socio-economic and 

demographic model system performed in conjunction with the development of a continuous time 

activity-based microsimulation model of travel demand for the Southern California Association 

of Governments. The socio-economic model system includes two major components.  The first is 

a synthetic population generator that is capable of synthesizing a representative population for 

the entire region while controlling for both household and person level marginal distributions.  

The second is an econometric microsimulator that models various socio-economic and 

demographic attributes for each person in the synthetic population with a view to develop a rich 

set of input data for the activity-based microsimulation model system.  The results show that the 

socio-economic model system is capable of replicating known distributions of demographic 

attributes in the population and can be easily scaled for implementation in large regions such as 

the Southern California area that includes a population of more than 18 million people in its 

model boundaries. 
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INTRODUCTION 
Planning agencies are increasingly moving towards the development and deployment of tour-

based and activity-based microsimulation models of travel demand as the complexity of 

transportation planning questions they must address becomes greater (Vovsha and Bradley, 

2006).  Activity-based microsimulation model systems are capable of simulating the activity-

travel patterns of each individual in a region’s population, essentially replicating a day in the life 

of a human.  The model systems include a series of submodels or components that are sensitive 

to a host of socio-economic, land use, accessibility, and cost variables, thus providing the ability 

to assess the impacts of a wide range of travel demand management strategies and land use 

policies (Shiftan and Suhrbier, 2002).  The Southern California Association of Governments 

(SCAG) embarked on a multi-year effort to develop a comprehensive continuous-time activity-

based microsimulation model system so that impacts of alternative policy and land use scenarios 

could be accurately assessed in response to the mandates of California Senate Bill 375 (SCAG, 

2010).   

The Comprehensive Econometric Microsimulator of Daily Activity Patterns (CEMDAP) 

serves as the core engine of the activity-based model system being implemented in SCAG (Bhat 

et al, 2004).  The overall model system, dubbed SimAGENT (Simulator of Activities, 

Greenhouse Emissions, Networks, and Travel), includes CEMDAP tied together with a series of 

additional model components needed to generate inputs for CEMDAP as well as process outputs 

from CEMDAP (Goulias et al, 2011).  The key model components that provide inputs to 

CEMDAP constitute the focus of this paper.   

Virtually all activity-based travel microsimulation model systems require a complete 

synthetic population for the model region so that the activity-travel patterns of individual 

travelers can be simulated through the day (Bowman, 2009).  The output of an activity-based 

model system is a series of travel records for each and every individual in the population.  As 

micro data on the actual population is not available, it is necessary to generate a synthetic 

population of individuals and households such that the distributions of socio-economic and 

demographic attributes in the synthesized population match known true population distributions 

(usually available from a census database).  There is an increasingly rich body of literature 

devoted to synthetic population generation, and although refinements continue to be made and 

variations in underlying algorithms do exist, the overall process for generating a synthetic 

population is quite well-established (Beckman et al, 1996; Guo and Bhat, 2004; Arentze et al, 

2007; Pritchard and Miller, 2009; Auld and Mohammadian, 2010; Mueller and Axhausen, 2011).  

A synthetic population is generated based on a set of control variables whose known 

(census) distributions drive the population synthesis process.  When the synthetic population is 

drawn from a sample file, all of these control variables as well as a series of other attributes of 

the sampled records are written to the synthetic population file.  This synthetic population then 

serves as the input to the activity-based model components which simulate daily activity-travel 

patterns for each individual in the population.  While this process may be satisfactory, it does 

raise a key issue worth addressing. As the population of a region is likely to be much larger than 

the sample file from which synthetic households are drawn, the synthetic population will 

inevitably have many records that simply repeat themselves.   This problem is particularly 

exacerbated in large scale activity-based microsimulation model deployments such as that for the 

Southern California Association of Governments.  The base year (2003) population for the model 

region is more than 17 million people, while that for the future year (2035) is forecast to be more 

than 25 million people.  When synthesizing such huge populations (from a sample file of one 

million records, for example), one is inevitably faced with rather large scale duplication of 
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records.  This results in a synthetic population that lacks the rich variance in population 

characteristics that would be desirable in the context of an activity-based microsimulation model 

implementation.  Not only is there a lack of rich variance in population characteristics when the 

socio-economic modeling process is confined to the use of a synthetic population generator, but 

there is an absence of recognition that many socio-economic attributes are choices that people 

and households make in response to changing demographics.  As a result, the socio-economic 

modeling process does not model choices related to education, employment, occupation, income, 

and housing type in response to changing population demographics.  This lack of sensitivity or 

responsiveness in the socio-economic modeling process limits the potential application of the 

overall activity-based model system to analyze alternative demographic scenarios (e.g., 

implications of an aging population).  In addition, while a few attempts have been made to model 

socio-economic choices of households and individuals (Goulias and Kitamura, 1992; Purvis, 

1994; Sundararajan and Goulias, 2003; Morand et al, 2010), there is limited evidence on how 

well such model systems work in transportation modeling practice.   

This paper describes a comprehensive socio-economic model system that has been 

implemented in the context of the activity-based model development effort for the Southern 

California Association of Governments.  The paper presents evidence on the performance of the 

model system by comparing outputs of the model against known census distributions.  The 

model system includes two major components.  First, there is a synthetic population generator 

capable of synthesizing a population while simultaneously controlling for known distributions of 

both household and person level attributes (Ye et al, 2009).  Second, there is a Comprehensive 

Econometric Microsimulator for Socioeconomics, Land-use, and Transportation System 

(CEMSELTS) module (Eluru et al, 2008) capable of modeling medium- and long-term socio-

economic choices of individuals and households. 

The remainder of this paper is organized as follows. The next section provides an 

overview of the synthetic population generator while the third section provides an overview of 

the socio-economic microsimulator. The fourth section presents results of the application of the 

synthetic population generator while the fifth section presents results of the application of 

CEMSELTS for the Southern California region. Finally, concluding thoughts are offered in the 

sixth section.  

 

THE SYNTHETIC POPULATION GENERATOR   
The synthetic population generator that has been implemented within SimAGENT for the 

Southern California Association of Governments is PopGen (Pendyala et al, 2011).  PopGen is 

capable of synthesizing a population while simultaneously controlling for both household and 

person level attributes of interest.  The process implemented in PopGen is rather similar to earlier 

approaches, except that there is an additional algorithm that reallocates weights across sample 

households such that person-level control attributes are more accurately replicated in the 

synthetic population.  

 The synthetic population generation process in PopGen begins with the identification of a 

set of control variables for which marginal distributions are available.  The control variables are 

those that are considered important in the transportation modeling context and for which true 

marginal distributions can be easily obtained, both in the base year and in the forecast year.  In 

the case of PopGen, control variables are identified both at the household level and the person 

level.  In addition to synthesizing population in households, PopGen is also capable of 

synthesizing population in group quarters (both institutional and non-institutional) if group 

quarter control totals are available.   



5 

 

 Once the household and person control variables, and their associated marginal 

distributions, are identified, an appropriate sample file that includes micro data records needs to 

be obtained.  This micro data file serves two important purposes. First, it provides the seed joint 

distributions across the control variables of interest at the household and person level.  Thus, if 

one has two household control variables, each with five categories, then the sample file provides 

a 5x5 joint distribution for the variables of interest.  As the number of variables and categories 

per variable increases, the dimensionality of the joint distribution may become very large, 

leading to the presence of many sparse (or zero) cells in the sample joint seed distribution.  

Although PopGen incorporates procedures to account for the zero cell problem, due caution 

needs to be exercised to avoid situations where seed distributions have an excessively large 

number of zeros wherein zero-cell adjustment procedures could introduce a systematic bias.  

Second, the sample file is the set of micro data records from which households (and all persons 

within each household) will be drawn to form the synthetic population.  

 The joint seed distributions (household and person control variable joint distributions) are 

adjusted iteratively until the cell values are such that marginal totals replicate the known 

marginal distributions.  This is accomplished using the iterative proportional fitting (IPF) 

procedure wherein row and column totals are iteratively matched against known marginal control 

totals in an iterative fashion. At the end of the iterative process, one has cell values that represent 

the total number of households (or persons) of a particular type (as defined by the multivariate 

categorization of a cell).  The idea behind the synthetic population generation process is to draw 

households from a sample file according to the cell values obtained.  

 However, the problem with drawing households (probabilistically) from the sample file 

according to the expanded household joint distribution cell values is that the drawing process 

does not recognize the differing household composition (person types) within households of the 

same cell.  For example, consider a cell defined by two-person, two-worker, middle income 

households. While the households in this cell are all similar with respect to controlled household 

attributes, they may differ substantially on person attributes.  One household in this cell could 

have a young newly married couple, while another household could have a mature couple of 

older adults whose children have grown up and moved away.  In other words, households need to 

be drawn from the sample file in such a way that person attributes of interest are controlled as 

well.  

 To facilitate this, PopGen employs an additional iterative process called the iterative 

proportional updating (IPU) algorithm.  In this procedure, weights allocated through the IPF 

process to households of a certain type are readjusted iteratively so that person controls are more 

accurately replicated in the synthetic population.  Say, the IPF process indicates that there should 

be 100 two-person, two-worker, middle income households in a certain geography (zone, block 

group, block, or tract).  If the sample file has 10 of these types of households, then each 

households gets a weight of 10.  However, as mentioned earlier, not all of these households 

should be treated with the same weight because they differ in their composition.  If the person-

based IPF process suggests that this particular geography has a large number of younger 

individuals, then households in this cell with younger people should be weighted more heavily 

than households in this cell with older people.  The IPU algorithm considers the IPF-generated 

person joint distribution cell values in reallocating weights among households of each cell (type) 

so that person control distributions are replicated more accurately.  

 After each sample household is assigned an appropriate weight that would best match 

household and person level control totals, appropriate rounding procedures are applied to the 

frequencies in the IPF-generated household attribute joint distribution so that whole numbers of 
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households may be drawn probabilistically from the sample file into the synthetic population.  

The weights assigned to each household in the sample file are used to facilitate the probabilistic 

drawing process and a synthetic population is thus obtained.  As the drawing process is 

probabilistic, numerous draws are performed and the synthetic population that best matches the 

expanded cell frequencies of the IPF-generated joint distributions is chosen (based on a 2
 

goodness-of-fit statistic).   

   

SIMULATOR OF SOCIO-ECONOMIC CHOICES 

The synthetic population that is obtained from PopGen includes a host of demographic and 

socio-economic attributes for each household.  These attributes are those available in the sample 

file (regardless of whether they were used as control variables in the synthesis process).  For 

example, one may have used household size, number of workers, and household income as 

household level control variables.  In addition to these variables, there are a host of other 

household attributes that are likely to be available in the sample file, and all of them get carried 

over into the synthetic population.  These may include such variables as vehicle ownership, 

number of children, housing unit type, family type, race of householder, age of householder, and 

ownership of home.  Similarly, a host of person-level attributes are also carried over into the 

synthetic population file.   

 As mentioned earlier, the replication of sample records in the synthetic population results 

in the loss of a rich variance in population socio-economic characteristics.  Moreover, many of 

the socio-economic choice phenomena are not explicitly modeled as a function of other 

demographic attributes, thus creating a system where long and medium term choice decisions are 

not sensitive to household and person demographic characteristics.  To overcome these 

limitations and provide a rich set of socio-economic inputs for activity-based modeling, 

SimAGENT integrates a comprehensive econometric microsimulator of socio-economics, land-

use, and transportation system (CEMSELTS) attributes.  All of the variables that can be 

simulated by CEMSELTS are stripped away from the synthetic population generated by PopGen 

and replaced with simulated values from CEMSELTS.  The resulting richer set of inputs is then 

fed to CEMDAP, the core activity-based modeling engine within SimAGENT to simulate 

complete daily activity-travel patterns for the population of the region.  

 Figure 1 presents the overall framework of CEMSELTS.  The base year module of 

CEMSELTS is comprised of two components.  The first component corresponds to a series of 

individual attributes including educational attainment, student status, school/college location, 

labor force participation, occupation industry, work location, weekly work duration, and work 

flexibility.  The second module corresponds to household level attributes of interest including 

household income, residential tenure, housing unit type, and household vehicle fleet 

characteristics.  The model system may be considered a hierarchical system of submodels where 

the outputs of a model higher in the hierarchy serve as inputs to subsequent models later in the 

hierarchy.  Virtually all of the models constitute econometric choice or duration models.   

 

Individual Level Models 

Within the CEMSELTS model, all individuals under five years of age are assumed to not go to 

school (although they may go to child care facilities, such activities are modeled in CEMDAP).  

All individuals between 5 and 12 years of age are assumed to pursue education using a rule-

based assignment to grades kindergarten through seven, based on age of the child.  A rule-based 

probability model, constructed using look-up tables of school drop-out rates, may be used to 

determine the education level of individuals between 13 and 18 years of age based on such 



7 

 

attributes as age, gender, and race.  Another rule-based probability model, similarly constructed 

using look-up tables of educational achievement, is used within CEMSELTS to determine the 

education status of each individual 18 years of age or over.  

 Following the modeling of educational status, the school and college location of all 

individuals who are students are simulated.  At this time, for simplicity, a simple rule-based 

school location model is used for individuals under the age of 18.  All individuals under the age 

of 18 are assumed to go to school to the closest zone with a school.  While it is true that many 

students attend schools that are not within their neighborhood or assigned school district, it is 

difficult to model school location choice in the absence of attributes about the various schools in 

the region.  If such data were available, then a robust school location choice model could have 

been estimated.  For those 18 years or age or over, a multinomial logit model of college location 

choice is estimated and deployed in CEMSELTS.  All of the zones with colleges and universities 

constitute the choice set for the college location model.   

 A binary logit model is used to determine whether an individual is participating in the 

labor force.  This model is estimated and applied for all individuals aged 16 years and over. The 

occupation industry is determined using a classic multinomial logit model with the following six 

alternatives – construction and manufacturing, trade and transportation, professional business, 

government, retail, and other.  The work location of all workers is determined using a 

multinomial logit model.  The universe of zones in the study region forms the choice set for this 

model. Several zonal characteristics including population, fraction of retail employment, fraction 

of service employment, level of service variables including travel time and travel cost, and 

accessibility measures capturing the number of employees (in 12 different industry types) that 

can be reached within different travel time windows from any given zone are included as 

explanatory variables in the work location model.  In addition, several interaction variables that 

account for observed heterogeneity among individuals (due to demographic attributes, such as 

age and gender) are included in the work location model specification.  

 Finally, two additional work characteristics – weekly work duration and work flexibility 

– are modeled.  While weekly time expenditure for work may be modeled as a continuous 

duration variable, CEMSELTS models weekly work duration using a multinomial logit model 

with a view to determine whether an individual works part-time, full-time, or over-time.  The 

three alternatives are defined as working less than 35 hours per week, between 35 and 45 hours 

per week, and over 45 hours per week.  Work flexibility is characterized as an ordinal variable 

with four levels – none, low, medium, and high degrees of flexibility (as specified by 

respondents to travel surveys that include such information).   

 

Household Models 
CEMSELTS includes a model of household income that includes a host of employment, 

occupation industry, and demographic variables as explanatory factors.  A grouped ordered 

response model formulation is used for household income.  The five categories in the household 

income model of CEMSELTS are: less than $10,000 per year, between $10,000 and $35,000 per 

year, between $35,000 and $50,000 per year, between $50,000 and $75,000 per year, and more 

than $75,000 per year.  Home ownership (whether own or rent housing unit) is determined using 

a binary logit model that includes a series of socio-economic and demographic attributes as 

explanatory variables in addition to a few accessibility and built environment variables. Separate 

multinomial logit models are estimated and applied to the two home ownership groups (owners 

and renters) to determine housing unit type. The alternatives in the multinomial logit model for 

households that own their units are single-family detached, single-family attached, and mobile 
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home/trailer.  The alternatives in the model for those renting their home are single-family 

detached, single-family attached, and apartment. 

 Finally, CEMSELTS includes a series of four models that collectively simulate the 

vehicle fleet composition for each household in the synthetic population.  Unlike most models 

that only simulate vehicle count, CEMSELTS is capable of simulating vehicle fleet composition 

with each vehicle characterized by body type, vintage, and make and model.  In addition, each 

vehicle is assigned a primary driver from the household.  This allows one to track vehicle usage 

later in the activity-travel simulation process, a critical step towards more accurately forecasting 

energy consumption and greenhouse gas emissions in response to alternative policies aimed at 

encouraging ownership and use of fuel efficient and clean vehicles.   

 In the vehicle fleet composition and allocation module, the total annual household 

mileage (including non-motorized mileage) is first determined using a log-linear regression 

model.  The output of this model is used as input to the Multiple Discrete Continuous Extreme 

Value (MDCEV) model of vehicle fleet composition (Bhat and Sen, 2006).  This model uses the 

total mileage as a travel budget which is allocated across the fleet of vehicles in the household.  

The MDCEV model formulation explicitly recognizes that vehicle ownership is characterized by 

multiple discreteness, with households free to choose multiple vehicle alternatives from among 

those in the market place.  

 At this time, each alternative in the MDCEV model is defined as a combination of body 

type and vintage category.  Nine body types are used, namely, sub-compact car, compact car, 

medium car, large car, sports car, medium sports utility vehicle (SUV), large SUV, van, and 

pick-up truck.  Six different vintage categories are used, namely, new or less than one year, two 

to three years, four to five years, six to nine years, 10 to 12 years, and more than 12 years.  The 

fuel type is not yet included as a dimension in the vehicle type choice model because of the very 

few observations of alternative fuel vehicles in virtually all vehicle data sets of travel surveys.  

As additional survey data about ownership of alternative fueled vehicles becomes available, the 

vehicle fleet composition simulation framework in CEMSELTS can be easily expanded to 

include consideration of fuel type.  In the current version, the total number of alternatives in the 

MDCEV model is 55 (54 combinations of body type and vintage categories plus one non-

motorized mileage alternative).  

 After the vehicle type is simulated, the make and model of all vehicles in the fleet is 

determined.  This is done using a multinomial logit model.  The choice set for the multinomial 

logit model varies by body type and vintage category.  There are a total of 759 make and model 

alternatives across all of the 54 combinations of body type and vintage categories. The model 

specifications include numerous variables that describe the attributes of each vehicle make and 

model. This information is obtained from the Wards Automotive Year Books and Green Vehicle 

Guide of the US Environmental Protection Agency (Binder, 2010; EPA, 2011).  This secondary 

data is appended to the vehicle records in a travel survey data set to facilitate model estimation.  

The model is therefore able to include several key vehicle attributes such as dimensions of the 

vehicle, horse power, engine capacity, type of wheel drive, curb weight, greenhouse gas rating, 

annual fuel cost, purchase price, and vehicle manufacturer indicator variables.  

 Finally, a multinomial logit model is used to determine the primary driver of each vehicle 

owned by the household.  The number of alternatives in this model is equal to the number of 

licensed drivers in the household.  The model includes interaction terms that account for 

observed heterogeneity due to demographic attributes (such as gender, education, employment) 

that affects the allocation of drivers to vehicles.  At this time, the MDCEV model of vehicle fleet 

composition and the multinomial logit model of primary driver allocation are independent 
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models implemented in a sequential manner. However, in subsequent versions of CEMSELTS, a 

joint simultaneous equations MDCEV-MNL model of vehicle fleet composition and primary 

driver allocation that accounts for unobserved heterogeneity in vehicle choices and correlated 

unobserved factors affecting the endogenous variables will be deployed.  

 

RESULTS FROM THE SYNTHETIC POPULATION GENERATION PROCESS 

This section presents results from the application of PopGen in the Southern California 

Association of Governments model region for the year 2003.  Although the base year for the 

activity-based microsimulation model is going to eventually be 2008, the current implementation 

is based on a 2003 base year.  In addition, extensive comparisons against census data (to validate 

PopGen and CEMSELTS) have been done for 2003; hence, this paper presents results pertaining 

to that year.   

 For the 2003 simulation year, PopGen was implemented as follows. Marginal 

distributions on control variables were furnished by the Southern California Association of 

Governments (SCAG) at the level of the traffic analysis zone (TAZ) for a total of 4109 zones.  

Of these zones, 4,035 had at least one household which needed to be synthesized.  Population 

synthesis was performed for this set of zones. While marginal distributions are obtained at the 

zonal level, sample joint distributions are obtained from the Public Use Microdata Sample 

(PUMS) of the US Census for the year 2000.  The PUMS is a five percent sample for the entire 

State of California; although the subsample corresponding to the Southern California region 

could have been extracted, the entire state PUMS data was used to have a richer sample from 

which to draw households and upon which to derive initial joint seed distributions. Results from 

runs that utilized the PUMS data for the entire state were found to be superior to those from runs 

that utilized only a subset of the state’s PUMS data. As the simulation year of 2003 is rather 

close to the PUMS year of 2000, this sample was considered satisfactory in terms of its 

representation of California’s population in the year 2003.  Note that subsequent simulations in 

which 2008 is treated as the base year is using more recent American Community Survey PUMS 

data so that there is a reasonable temporal correspondence between the sample file and the 

simulation year.  Regardless of the year of simulation, SCAG is providing all marginal 

distribution information for control variables of interest at the level of the zone.   

In order to facilitate the synthesis process, every zone in the model region is mapped to a 

PUMA or public use microdata sample area.  This is because the location of each household in 

the PUMS file is specified at the level of the PUMA.  In other words, joint seed distributions of 

the control variables of interest can be derived from the PUMS file only at the PUMA level.  As 

geographical location information is available in the PUMS file only at the PUMA level, but 

population synthesis must be done at the zonal level, all zones that fall within a PUMA get the 

same sample seed joint distribution.  The correspondence between zones and PUMA geographies 

is also provided by the Southern California Association of Governments.   

The control variables used in the synthesis process and their categories are shown in 

detail in Table 1. Control variables were chosen based on their potential importance in 

influencing activity-travel patterns of individuals in the population and the availability of 

marginal distributions at the zonal level through the SCAG socio-demographic forecasting 

processes.  The synthesis was conducted using a series of household level control variables, 

yielding a total of 280 household level constraints, and a series of person level control variables 

yielding a total of 140 person-type constraints.  Household income is another important control 

variable that could have been included in the synthesis process.  While household income has 

been added as a control for the 2008 simulation year, it was not included in the 2003 base year, 



10 

 

partly due to concerns about the potentially large number of cells (constraints).  Adding income 

with four categories would have increased the number of household level constraints from 280 to 

1140.  Although it is reasonable to accommodate such a large number of constraints in the 

synthesis process, the absence of income as a control variable in the 2003 simulation offers a 

unique opportunity to see how well the synthesis process is able to replicate the distribution of an 

uncontrolled variable (whose marginal distribution is known) based on the chosen set of control 

variables.  

 The synthesis was performed at the zonal level.  The nature of the PopGen algorithm is 

such that the number of households in the synthetic population exactly matches that 

corresponding to the number implied by the given marginal distributions.  A total of 5,549,771 

households were synthesized, which is exactly the same number of households in the region.  

The total number of persons synthesized is 17,363,222 which is about 1.3 percent less than the 

actual population total (as implied by the marginal distributions) of 17,595,729.  This 

discrepancy may, at least in part, be due to some minor inconsistencies between the person totals 

implied by the person control variables and the person totals implied by the household control 

variables.   

 Table 1 also presents results of the synthetic population process showing the distributions 

of various attributes in the synthetic population versus those used to drive the synthesis process. 

In general, it is found that the synthetic population generation process is able to replicate known 

distributions of variables in the population quite well.  Among household variables, the synthetic 

population replicates distributions of age of householder and presence of children extremely 

well.  It is found that the synthetic population over-represents family households and under 

represents non-family households.  It appears that the synthetic population generation process 

falls somewhat short of accurately replicating non-family households.  This pattern is seen both 

in household family type and household type.  This pattern of under-synthesizing non-family 

households is also seen in the household size distribution where single person households are 

considerably under-represented while larger households are over-represented in the synthetic 

population.  Non-family households are more likely to be single person households than multiple 

person households, and an under-synthesis of non-family households will naturally yield fewer 

single person households than desired.  Additional attention needs to be paid to the controls 

necessary to accurately capture the presence of non-family households in the population 

(particularly because their presence as a proportion of all households in the population is 

increasing).  

 It is found that the synthesis process yielded a population whose household income 

distribution closely replicates the known marginal distribution, even though income was not 

explicitly controlled.  Although the match is quite close, it may be prudent to control for income 

in the synthesis process given the importance of income in shaping activity-travel behavior.  

When it is not controlled, the synthetic population has a slight over-representation of high 

income households and an under-representation of low income households. With respect to 

person controls, the synthetic population distributions closely mirror the given marginal 

distributions.  All of the percent differences are quite small, and likely stem from the under-

synthesis of the overall population total.  By enhancing consistency between household controls 

and person controls, these minor discrepancies can be easily remedied.  One of the issues 

affecting the synthesis is that the population total implied by the given marginal household size 

distribution is considerably less than the total population count implied by the given person 

control distributions. It is this discrepancy that is contributing to an under-synthesis of total 

population.  For the 2008 base year synthesis, an adjustment process has been implemented in 
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the synthesis process to modify the household size distribution such that the population counts 

from the household controls and person controls closely match one another.    

 In addition to checking PopGen performance at the regional scale, a series of 

disaggregate validation checks were performed to assess model performance at the level of the 

traffic analysis zone.  Distributions of attributes (actual versus synthesized) were compared at the 

individual zone level; but for a few exceptions, the model was found to replicate patterns of 

demographic characteristics at the individual zone level very closely.  It would be impossible to 

include all disaggregate validation checks within the scope of this paper, but Figure 2 provides 

an overall glimpse into the disaggregate zone-level performance of PopGen.  The graph 

compares actual population totals in each zone against synthesized population totals produced by 

PopGen.  The points are found to be tightly concentrated around the 45 degree line indicating a 

strong match to reality.  Where there are outliers or discrepancies, the reasons can be easily 

traced to problems with input data where population totals exhibited gross inconsistencies with 

household size distributions.  By correcting such discrepancies, even those zones currently 

showing poor synthesis performance can be represented appropriately in the synthetic 

population. 

 

RESULTS FROM THE APPLICATION OF CEMSELTS 

This section presents a detailed discussion of the results obtained from the application of 

CEMSELTS to model socio-economic characteristics of the synthetic population for the 

Southern California region.  The Southern California Association of Governments (SCAG) 

provided data regarding school drop-out rates for various ages so that a rule-based probability 

model of being in school could be constructed for 13 to 18 year old individuals based on age, 

gender, and race. The agency also provided data regarding educational attainment status for 

individuals 18 years or age or older.  Much of this data is based on census information and is 

therefore representative of the trends in the population.  Accessibility indicators which measure 

the number of employees that can be reached from any zone within various travel time windows 

were constructed using detailed micro-level land use data provided by SCAG (Chen et al, 2011).  

Models of work location, work flexibility, and labor force participation at the person level, and 

household income at the household level, were estimated using travel survey data for the region.  

Finally, the MDCEV model of vehicle fleet composition was estimated using the residential 

component of the California vehicle survey data collected in 2008.  The model to assign a 

primary driver for each vehicle in the household is estimated using travel survey data.  In 

summary, a suite of models were estimated using local survey and land use data so that the 

model system was customized to reflect conditions in Southern California.  

 In order to validate CEMSELTS, the predictions from CEMSELTS were compared 

against regional socio-economic characteristics as reported in the American Community Survey 

(ACS) data of 2003 and the decennial census data of 2000.  In Table 2, results from the person-

level modules of CEMSELTS are compared against the census distributions for these two years.  

Note that the simulation year for CEMSELTS (and PopGen) is 2003.  The model generally 

predicts characteristics of the population quite well.  For children 3 to 17 years old, the model 

under-predicts the proportion of individuals in the higher grades and over-predicts the proportion 

of young children going to preschool through third grade.  With regard to educational attainment 

status for adults, the model predicts a larger proportion of individuals as completing high school, 

whereas the census distributions show higher percentages of individuals having an education 

attainment less than high school completion.  Nevertheless, the model reflects the general trend 

reasonably well.  The labor force participation rate is replicated quite well.  The occupation 
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distribution is also reasonably consistent with census distributions except for construction and 

manufacturing and retail trade where the model under-predicts the proportions, and the other 

category here the model appears to over-predict the proportion.  Overall, percent differences are 

not substantial.   

 In Table 3, a comparison of the output of the household level modules of CEMSELTS 

against census distributions shows that the model, with a few exceptions, is able to replicate 

distributions quite well.  The vehicle ownership distribution is replicated very well, except for a 

modest over-prediction of the proportion of households falling into the highest vehicle ownership 

category of four or more vehicles.  The distribution of households by number of workers is 

predicted in a satisfactory manner, with a slight over-prediction of zero-worker households and a 

slight under-prediction of households with two or more workers.  The income distribution is also 

replicated well, although there is an under-prediction of the percent of households in the highest 

two income brackets and an over-prediction of the percent of households in the second income 

bracket.  Home ownership and housing unit type distributions are matched very well; however, 

the housing unit type for renters shows considerable discrepancy.  Additional work is warranted 

in the estimation and calibration of a renter housing unit type model.  Whereas CEMSELTS 

predicts that renters are equally split between single units (attached and detached) and 

apartments, the census data suggests that nearly three quarters of renters are residing in 

apartments.   

 Table 4 shows the journey to work flow distributions by county pair for the year 2000 

(such information is available only in the decennial Census year of 2000) and compares the flow 

distributions against predictions provided by CEMSELTS.  It is seen that the model is able to 

predict county to county work flow patterns remarkably well. The differences between the 

predicted distributions and the observed census distributions are very small for virtually all cells 

in the table. Overall, it appears that CEMSELTS is able to simulate socio-economic and work 

flow characteristics for the synthetic population such that the resulting synthetic population is 

representative of the true population in the region. 

 

CONCLUSIONS  
The accuracy of travel forecasts is highly dependent on the accuracy of the inputs that drive the 

forecast.  The old adage of “garbage in, garbage out” remains as true today as it has always been 

in the past.  Although model systems are becoming behaviorally more realistic, statistically more 

rigorous, and econometrically more theoretical and robust, the fact remains that the quality and 

accuracy of socio-economic input data is of paramount importance in any traditional or emerging 

transportation modeling system.   

 In the context of activity-based travel model systems which are capable of 

microsimulating daily activity-travel patterns of individual travelers, it is necessary to generate a 

synthetic population with a rich set of explanatory variables (socio-economic and demographic 

characteristics) that can be used to drive the activity-travel simulation process.  This paper 

focuses on the generation of such a synthetic population with a rich set of attributes.  In 

particular, this paper describes the socio-economic model system that has been implemented for 

the Southern California Association of Governments in conjunction with its activity-based travel 

demand model implementation effort.  The socio-economic model system, which is responsible 

for generating a representative synthetic population with a rich set of demographic variables, is 

comprised of primarily two components.  The first component is a synthetic population generator 

capable of simultaneously controlling for known household-level and person-level control 

distributions.  The second component is a comprehensive econometric microsimulator of socio-
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economics, land-use, and transportation system (CEMSELTS) that is comprised of a series of 

submodels capable of simulating various medium- and long-term choices of individuals.  These 

include such dimensions as school status, educational attainment, labor force participation, 

occupation industry, household housing unit type, household income, and household vehicle fleet 

composition.   

 The process employed begins with the generation of a synthetic population based on 

known distributions of control variables.  The synthetic population is comprised of households 

probabilistically drawn from a sample file such that the known marginal control distributions are 

replicated in the synthetic population.  However, as the size of the population is far greater than 

the size of the sample file, many records get replicated in the synthetic population resulting in a 

loss of rich variance in socio-economic and demographic attributes that is desirable in a 

representative population.  Many of the medium- and long-term choice attributes are deleted 

from the synthetic population obtained from the population synthesizer, and are instead 

simulated using the series of choice models embedded in CEMSELTS.  This results in a 

representative synthetic population with a set of explanatory attributes that vary across the 

population.  The entire model system has been calibrated for the Southern California region and 

applications of the model system to the 2003 base year simulation show that the process is able 

to replicate known distributions of attributes in the population very well.  Except for the 

occasional deviation (e.g., housing unit type distribution for renters), the models produce a 

synthetic population with distributions on socio-economic attributes and journey-to-work flows 

that closely resemble those in census data. Although the Southern California region application is 

at the level of the traffic analysis zone, the model system presented in this paper can be applied 

at any geographic level as long as there are network level of service measures that can be derived 

for the chosen spatial unit of resolution and fed into the CEMSELTS model components as input 

variables.  The choice of spatial unit is generally a function of data availability and network 

fidelity, although it is conceivable that overall performance would improve as the spatial 

resolution becomes increasingly fine.   

 The contributions of this paper are noteworthy on several counts.  First, the paper 

demonstrates that an enhanced socio-economic modeling system that includes both a population 

synthesizer and a microsimulator of demographic attributes can effectively produce a 

representative population for a model region.  While the application of a population synthesizer 

by itself may yield desirable results, the application of a comprehensive econometric 

microsimulator of socio-economic characteristics in conjunction with a population synthesizer 

will help provide the rich variance in input variables desired for travel forecasting.  This paper 

offers real-world empirical evidence that known census distributions can indeed be replicated by 

a socio-economic modeling system such as that deployed for the Southern California Association 

of Governments.  Second, the paper demonstrates that microsimulation model systems can be 

applied in large scale settings such as the Southern California region that encompasses a 

population of nearly 18 million people.  Although there were initial concerns about the ability of 

a microsimulation model system to replicate patterns of population distributions in such a large 

and diverse region, it has been shown that a synthetic population generator combined with a 

socio-economic microsimulator can be successfully deployed in large scale simulation contexts.    

Finally, the model system includes a novel multiple discrete continuous extreme value 

(MDCEV) model combined with a multinomial logit model to simulate vehicle fleet composition 

by type of vehicle and the allocation of vehicles to drivers in the household.  This component of 

the simulator will undoubtedly be useful in addressing emerging planning issues related to 

energy sustainability and greenhouse gas emissions.   
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 Additional work is ongoing to migrate the model system to a new 12,000 zone system 

and examine the computational feasibility of implementing a socio-economic microsimulation 

model system for such a large number of spatial units.    In addition, some of the components of 

CEMSELTS that are currently implemented sequentially are being combined into joint model 

systems to simultaneously simulate multiple attributes while accounting for unobserved 

heterogeneity and correlated unobserved factors across dimensions of interest.  Future research 

should explore whether the margin of error varies according to the size of the study area and the 

extent to which variations in data quality among small and larger areas might affect validation 

statistics.    
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Table 1. Results of Population Synthesis 

Category Category Definition Actual Synthesized % Diff 

Household Level Variables 

Household family type       

1 Family 3,930,319 4,040,942 2.81% 

2 Non-Family 1,619,452 1,508,829 -6.83% 

Householder age category       

1 15 - 64 years old 4,598,761 4,621,472 0.49% 

2 65 and over 951,010 928,299 -2.39% 

Household size       

1 1 person 1,260,748 1,004,031 -20.36% 

2 2 persons 1,519,356 1,536,480 1.13% 

3 3 persons 877,779 978,133 11.43% 

4 4 persons 869,886 941,830 8.27% 

5 5 persons 507,783 542,800 6.90% 

6 6 persons 260,011 275,830 6.08% 

7 7 or more persons 254,208 270,667 6.47% 

Household type       

1 Family: married couple 2,862,133 2,937,310 2.63% 

2 Family: male householder, no wife 313,016 326,636 4.35% 

3 Family: female householder, no husband 755,170 776,996 2.89% 

4 Non-family: householder alone 1,263,432 1,172,531 -7.19% 

5 Non-family: householder not alone 356,020 336,298 -5.54% 

Presence of own household children       

1 Yes 1,285,454 1,285,333 -0.01% 

2 No 4,264,317 4,264,438 0.00% 

Household Income (uncontrolled variable)       

1 < $25,000 1,482,757 1,393,639 -6.01 

2 ≥ $25,000 - $50,000 1,492,578 1,494,229 0.11 

3 ≥ $50,000 - $100,000 1,673,242 1,652,769 -1.22 

4 ≥ $100,000 901,194 1,009,134 11.98 

Person Level Variables 

Race       

1 White alone 9,299,723 9,299,051 -0.01% 

2 African-American alone 1,305,531 1,262,273 -3.31% 

3 American-Indian and Alaska Native alone 167,742 164,926 -1.68% 

4 Asian alone 1,840,528 1,813,338 -1.48% 

5 Native Hawaiian and other Pacific Islander alone 49,597 49,803 0.42% 

6 Some other race alone 4,109,413 3,956,487 -3.72% 

7 Two or more races 823,195 817,344 -0.71% 

Gender       

1 Male  8,718,816 8,628,836 -1.03% 

2 Female 8,876,906 8,734,386 -1.61% 

Age       

1 Under 5 years 1,328,570 1,333,832 0.40% 

5 35 to 44 years 2,742,378 2,684,693 -2.10% 

6 45 to 54 years 2,277,766 2,243,583 -1.50% 

7 55 to 64 years 1,422,660 1,408,504 -1.00% 

8 65 to 74 years 910,582 924,701 1.55% 

9 75 to 84 years 615,458 625,655 1.66% 

10 85 and more years 217,032 215,209 -0.84% 
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Table 2. CEMSELTS 2003 Individual Level Modules – Comparison with ACS 2003 and Census 2000  

Individual Socio-demographics 

Values in Percent
 

Values in Percent 

ACS 2003 
CEMSELTS 

Predicted 

Difference in 

Percentage 

Census 

2000 

CEMSELTS 

Predicted 

Difference in 

Percentage 

Enrollment of Children (3 to 17 years)
 

            

Preschool - Grade 3 37.07 44.59 7.52 41.17 44.59 3.42 

Grade 4 - Grade 8 41.64 42.16 0.52 38.76 42.16 3.40 

Grade 9 - Grade 11 21.29 13.25 -8.04 20.07 13.25 -6.82 

Educational Attainment (Adults) 
   

   

Less than Grade 9 11.58 2.23 -9.35 13.14 2.23 -10.91 

Grade 9 - Grade 12 (no diploma) 12.05 8.28 -3.78 14.71 8.28 -6.44 

Completed High School 45.70 58.48 12.78 44.00 58.48 14.48 

Associate or Bachelors 22.55 22.95 0.41 20.77 22.95 2.18 

Graduate Degree (Masters or Ph.D) 8.12 8.06 -0.06 7.37 8.06 0.69 

Labor Participation
 

   
   

Employed  59.47 59.07 -0.40 56.81 59.07 2.26 

Unemployed 40.53 40.93 0.40 43.19 40.93 -2.26 

Employment Industry 
   

   

Construction and Manufacturing 19.92 14.46 -5.46 20.67 14.46 -6.21 

Trade and Transportation 4.94 7.32 2.38 4.86 7.32 2.46 

Personal, Professional and Financial 50.63 49.42 -1.21 49.34 49.42 0.08 

Public and Military 3.94 5.07 1.13 4.04 5.07 1.03 

Retail Trade 15.29 10.77 -4.51 15.60 10.77 -4.83 

Other 5.28 12.96 7.68 5.49 12.96 7.47 
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Table 3. CEMSELTS 2003 Household Level Modules – Comparison with ACS 2003 Data and Census 2000 
 

Household Socio-demographics 

Values in Percent 
 

Values in Percent 
 

ACS 2003 
CEMSELTS 

Predicted 

Difference in 

Percentage 

Census 

2000 

CEMSELTS 

Predicted 

Difference in 

Percentage 

Number of Vehicles 
   

      

Households with no vehicles 8.29 7.27 -1.02 10.07 7.27 -2.79 

Households with 1 vehicle 33.34 31.32 -2.02 34.85 31.32 -3.55 

Households with 2 vehicles 37.48 34.71 -2.77 37.16 34.72 -2.44 

Households with 3 vehicles 14.10 15.17 1.07 12.59 15.17 2.59 

Households with 4 or more vehicles 6.79 11.52 4.74 5.33 11.52 6.19 

Number of Workers 
      

Households with no workers 12.21 16.84 4.63 11.31 16.84 5.53 

Households with 1 worker 34.23 36.80 2.58 32.98 36.80 3.82 

Households with 2 or more worker 53.57 46.36 -7.21 55.71 46.36 -9.35 

Household Income 
      

$0- $9999 8.08 8.09 0.01 8.98 8.09 -0.89 

$10,000-$34,999 28.85 40.45 11.6 29.56 40.45 10.89 

$35,000-$49,999 15.05 14.47 -0.58 15.24 14.48 -0.76 

$50,000-$74,999 18.53 13.58 -4.95 18.89 13.58 -5.31 

$75,000 and more 29.49 23.4 -6.09 27.32 23.40 -3.93 

Household Tenure             

Owner 55.74 61.05 5.30 54.78 61.03 6.25 

Renter 44.26 38.95 -5.30 45.22 38.97 -6.25 

Household Type for Owners
 

      
Single Unit (Attached/Detached) 88.15 93.42 5.27 54.78 61.05 6.27 

Other 11.85 6.58 -5.27 45.22 38.95 -6.27 

Household Type for Renters
 

      
Single Unit (Attached/Detached) 27.87 50.49 22.62 88.32 93.42 5.10 

Apartment 72.13 49.51 -22.62 11.68 6.58 -5.10 
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Table 4. CEMSELTS Work Flow Distribution (in Percent) by Destination County – Comparison with the Census 2000 Data 

Origin County 

Destination County 

Imperial Los Angeles Orange Riverside San Bernardino Ventura Total 
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Imperial  0.60 0.76 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.61 0.78 

Los Angeles 0.01 0.00 53.32 52.21 2.39 3.23 0.14 0.31 0.61 1.19 0.48 0.53 56.94 57.46 

Orange 0.00 0.00 2.76 2.80 16.26 14.17 0.17 0.35 0.14 0.28 0.01 0.00 19.35 17.60 

Riverside 0.01 0.00 0.55 0.23 0.77 0.21 6.22 7.59 0.90 1.39 0.00 0.00 8.45 9.43 

San Bernardino 0.00 0.00 1.66 1.03 0.43 0.22 0.78 1.33 6.81 7.52 0.01 0.00 9.69 10.10 

Ventura 0.00 0.00 1.02 0.99 0.01 0.00 0.00 0.00 0.00 0.00 3.93 3.64 4.97 4.63 

Total 0.62 0.76 59.31 57.26 19.86 17.83 7.32 9.59 8.47 10.38 4.43 4.18 100.0 100.0 
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Figure 1. Basic Framework of CEMSELTS 
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Figure 2. Comparison of Synthetic and Actual Person Totals at the Individual Zone Level 
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