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ABSTRACT 1 
The development of integrated land use – transport model systems has long been of much interest to 2 
the profession due to the complex inter-relationships among land use, transport demand, and network 3 
supply.  This paper describes the design and prototype implementation of an integrated model system 4 
which involves the microsimulation of location choices within the land use domain, of activity-travel 5 
choices within the travel demand domain, and of individual vehicles on networks within the network 6 
supply modeling domain.  While many erstwhile applications of integrated transport demand – supply 7 
models have relied on a sequential coupling of the models, the system presented in this paper involves a 8 
dynamic integration of the activity-travel demand model and the dynamic traffic assignment and 9 
simulation model, with appropriate feedback to the land use model system.  The system has been fully 10 
implemented and initial results of model system runs in a case study test application suggest that the 11 
proposed model design provides a robust behavioral framework for simulating human activity-travel 12 
behavior in space, time, and networks. The paper provides a detailed description of the design together 13 
with results from initial test runs.    14 
 15 
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INTRODUCTION 1 
Microsimulation approaches to land use and transport modeling allow one to realistically represent 2 
choice making behavior of individuals while recognizing the interactions, constraints, and underlying 3 
decision making mechanisms at play (Kitamura et al 2000). The implementation of microsimulation 4 
approaches has been facilitated by advances along three fronts, namely, the availability of rich data on 5 
individual decision making behavior in the form of activity-travel surveys and diaries, advances in 6 
econometric and statistical modeling methods which allow one to model the complex behaviors of 7 
individual agents without making simplifying assumptions, and advances in computational technologies, 8 
both in the software and hardware domains, which have allowed for the efficient estimation of complex 9 
models and the simulation of millions of agents within reasonable computational time (Goulias and 10 
Kitamura 1992).  11 

Advances in microsimulation approaches to modeling urban environments have happened 12 
rather independently in three different streams of research, namely, land use, travel demand, and 13 
network supply. In the area of land use modeling, mcirosimulation approaches are applied to model the 14 
urban form in a region including, land use choices of individuals, businesses, governments and 15 
developers. Households within a region make choices about their residential location, while individuals 16 
within a household make choices about their fixed activity locations including work place location, 17 
school location, and college location (while accounting for intra-household interactions and constraints). 18 
Businesses make choices about locating their offices, and other related facilities. Developers make 19 
decisions regarding development (on empty parcels of land) or redevelopment (on parcels of land with 20 
existing facilities). These land use choices, along with the socio-demographic and economic evolutionary 21 
processes, government regulations, and zoning policies comprise the urban form in a region (Martinez 22 
1992, Waddell 2002, Hunt and Abraham 2005, Salvini and Miller 2005).  23 

In the travel demand arena, the field has experienced an increasing use of activity-based 24 
microsimulation approaches to travel demand modeling and forecasting. Activity-based approaches 25 
explicitly recognize the fact that individuals travel in order to fulfill their need to engage in activities. The 26 
primary output from an activity-based travel demand model is the activity-travel patterns of individuals 27 
within a household along a continuous time axis (Kitamura and Fujii 1998).  The model system comprises 28 
of various sub-models that closely interact with each other to generate household activity agendas, 29 
individual activity schedules, activity linkages, trip chaining, destination and mode choices subject to the 30 
different household interactions (including interactions among household members), and temporal, 31 
spatial, and monetary constraints (Arentze and Timmermans 2004). There is a rich body of literature on 32 
various implementations of activity-based model systems (Henson and Goulias 2006). These model 33 
systems differ from each other on the underlying behavioral paradigms to represent activity-travel 34 
decision making behavior and by the varying degrees to which choice processes are represented 35 
(Pendyala et al. 2008). 36 

Network assignment is typically the last step in any transport model. Conventional assignment 37 
methods have  do not recognize that transportation networks evolve continuously through the day, and 38 
the underlying assumption of static network conditions in many assignment models in practice lead to 39 
results that are unlikely to be representative of actual network conditions.  With microsimulation 40 
models of travel demand now capable of generating demand at a fine temporal resolution (e.g., one 41 
minute), there is increasing interest in the deployment of dynamic traffic assignment models which 42 
explicitly account for network dynamics along a continuous time axis allowing for an accurate 43 
representation of people’s path choices and resulting network conditions (Peeta and Ziliaskopoulos 44 
2001, Friedrich et al. 2000). Dynamic traffic assignment models provide the same outputs as static 45 
assignment models, but with an added time dimension, i.e., they generate time varying transport 46 
accessibility measures of the network.  This makes dynamic traffic assignment models ideally suited to 47 
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simulate the impacts of dynamic pricing strategies, emerging real-time information technologies, and 1 
intelligent transportation systems deployments.   2 

Although research in these three fields has proceeded somewhat in parallel, it is widely 3 
recognized that there are important inter-relationships and dependencies among these modeling 4 
domains and there is a need to account for linkages across the model systems in an integrated 5 
framework to accurately model urban environments (Timmermans 2003, Miller 2006). Land use choices 6 
are affected by network travel accessibility measures.  In turn, land use choices affect travel demand; 7 
one of the major factors affecting the activity-travel choices of individuals is their location choices 8 
including home location, work location, and school location, among others.  Travel demand is affected 9 
by network accessibility measures, i.e., the temporal and spatial coordinates of the destination 10 
opportunity space is limited by conditions on the network (e.g., speed, delays). Finally, network 11 
conditions are affected by travel demand that is generated; where people travel and the routes they 12 
take affect conditions on the network.  13 

There has been considerable progress made in the conceptualization and operationalization of 14 
integrated modeling approaches which seek to model the different components of the urban 15 
environments, namely, land use, activity-travel demand, and network supply in a single unifying 16 
framework. While some frameworks have emphasized the linkages between land use and travel 17 
demand (Waddell et al 2008, Salvini and Miller 2005, Wagner and Wegener 2007), other frameworks 18 
have focused on the travel demand and network supply interrelationships (Lin et al 2008, Cetin 2002, 19 
Kitamura et al 2008, Rossi 2011, Castiglione et al 2011). However, in most of these integration 20 
approaches, linkages across model systems are established rather loosely through sequential feedback 21 
processes and data exchange mechanisms. There have been very limited attempts to integrate the three 22 
model systems in a single unifying framework largely due to the complexity associated with individual 23 
model systems, the analytical challenges associated with linking these systems which operate at 24 
different temporal and spatial resolutions, and computational challenges associated with 25 
microsimulating all three components of an urban environment.  26 

In this research effort, an integrated modeling system dubbed SimTRAVEL- Simulator of 27 
Transport, Routes, Activities, Vehicles, Emissions, and Land - is presented with a view to more tightly tie 28 
together component model systems in a behaviorally consistent fashion. A prototype has been 29 
developed and tested on a three city subarea in the southeast region of the Phoenix metropolitan area. 30 
The next section provides an overview of the integrated model design. The third section describes the 31 
operational implementation of the integrated model system along with a description of the individual 32 
model systems and the software that support it. In the fourth section, a brief overview of the study area 33 
is presented; this is followed by a presentation of results in the fifth section and concluding thoughts in 34 
the final section.  35 
 36 
INTEGRATED MODEL SYSTEM DESIGN 37 
The proposed design comprises a generalized framework for integrating land use, travel demand and 38 
traffic assignment models and is not limited to any particular implementation of the individual model 39 
systems. Figure 1 presents a high-level overview of the proposed integrated model design. The process 40 
starts with a bootstrapping step. A key input to the integrated model system is origin-destination (O-D) 41 
travel times. One can obtain an initial set of travel times from a calibrated four-step travel demand 42 
model. However, these travel times are based on coarse aggregations of time (the day is divided into 43 
four or five time periods) and the origin-destination matrices used are obtained from trip-based 44 
modeling approaches. As a result, the travel times may not reflect actual network conditions and are 45 
likely to be inconsistent with the paradigms adopted in activity-based travel demand and network 46 
dynamics models. A bootstrapping procedure allows one to generate time varying O-D matrices 47 
consistent with the notion of networks which evolve over the course of a day.  48 
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In a bootstrapping procedure, the peak and off-peak O-D travel time matrices from a four-step 1 
model serve as inputs to a land use model to generate the location choices of all agents within an urban 2 
environment. The location choices along with the four-step O-D travel time matrices are then used to 3 
generate activity-travel patterns for the entire population in a region. The demand that is generated is 4 
then routed and simulated using a dynamic traffic assignment model to obtain time varying travel times 5 
consistent with the paradigm of time varying network conditions. In subsequent iterations of the 6 
bootstrapping step, the time varying travel time matrices are fed back to the activity-based travel 7 
demand model and the process is repeated until convergence in the travel time matrices is achieved. 8 
The converged travel time matrices are then used to kick off a simulation run of the integrated model 9 
for the base year. 10 

In the base year simulation of the integrated model, first a synthetic population is generated for 11 
the region using a synthetic population generator. The land use microsimulation model is then run to 12 
simulate the longer term location choices of households, persons, firms and real estate developers. The 13 
activity-based travel demand model system then simulates the activity-travel patterns of individuals 14 
along a continuous time axis. Both the land use microsimulation model and the activity-based travel 15 
demand model utilize network accessibility measures by time of day in generating choices. Trips 16 
generated are then routed and simulated through the network in the dynamic traffic assignment model 17 
along a continuous time axis. The resulting network conditions, namely, the O-D travel times are then 18 
fed back into the activity-based travel demand model. Activity-travel patterns are adjusted in response 19 
to the modified network conditions and the trips are re-routed and re-simulated in the dynamic traffic 20 
assignment model. This last step is repeated until convergence is achieved in the network conditions.  21 

The converged base year network conditions are then fed into the land use microsimulation 22 
model to simulate the location choices for a future year including the land use development patterns, 23 
household and business location choices, and other real-estate market processes (rents, prices). There 24 
are two approaches to generating the synthetic population for a future year. The first approach is to 25 
generate a synthetic population again for the future year based on the control marginal distributions for 26 
a future year. Alternatively one could evolve the base year synthetic population by subjecting it to 27 
various individual, household lifecycle socio-economic and demographic events to create a synthetic 28 
population for a future year.  The activity-travel demand generation and the dynamic traffic assignment 29 
steps are then iteratively repeated (with network conditions fed back) until convergence is achieved. 30 
This process is repeated for each horizon year.  31 

As can be seen from Figure 1, there is no instantaneous (“real-time”) feedback from the traffic 32 
assignment model to the land use microsimulation model. This can be explained by the horizon of the 33 
choices that each of these model systems aim to simulate. The land use model deals primarily with 34 
longer term choices (location, employment, residential land use) whereas the activity-travel demand 35 
model and the dynamic traffic assignment model deal with shorter term activity-travel choices which are 36 
closely linked together. The accessibility indicators that people experience in one year are assumed to 37 
affect the location choice decisions for a subsequent year. Therefore the land use microsimulation 38 
operates at a temporal resolution of one year. The network level of service and accessibility measures 39 
from one year affect the location choice decisions of the next year, and the location choices in turn then 40 
affect the integrated activity-travel demand and supply model system for that year.  41 

The proposed approach is quite generic and can be operationalized using any land use, travel 42 
demand, and traffic assignment models so long as consistency in the treatment of behaviors, and 43 
consistency in the representation of behavioral units, space, and time are maintained across model 44 
systems. While it may appear that the integrated modeling framework presented in this section 45 
resembles sequential integrated modeling approaches that have been proposed in the literature and 46 
implemented in practice, an important distinction can be drawn in the processes used to establish the 47 



6 
 

linkages and inter-dependencies between the travel demand and the traffic assignment components of 1 
the integrated model system.  This linkage is described in the next section.    2 
 3 
Dynamic Activity-Travel Simulation 4 
An approach often proposed to integrate the demand model and the network supply model is to run the 5 
models sequentially with feedback of the network conditions to the demand model until convergence is 6 
achieved. In this naïve sequential approach to integration, the individual model systems are run 7 
independently and loosely coupled together with input-output data flows (Kitamura et al 2005). In 8 
sequential implementations of integrated model systems, the activity-based travel demand model is run 9 
first to simulate the activity-travel patterns for the entire population for a full 24 hour period. The 10 
activity-travel patterns are then converted to trip lists (Castiglione 2011) or trip tables (Lin et al 2008) to 11 
feed into a dynamic traffic assignment model. It can be seen that, in this approach, there is a potential 12 
loss of information as well as the possibility to introduce spatial and temporal inconsistencies into the 13 
activity-travel schedules of individuals. If one considers the approach in which trip tables are created 14 
from individual activity-travel schedules, trips can no longer be traced back to the individual that 15 
engages in the activity/trip and hence there is a loss of information. Even in approaches where trip lists 16 
are passed with individual information attached to each trip, the sequential approach fails to capture 17 
the “emergent” nature of activity-travel scheduling behavior in response to “actual” arrival time 18 
(network conditions). For example, if a person arrives at his or her destination earlier than expected, the 19 
sequential approach would not allow the person to alter or modify his or her activity agenda and will be 20 
made to wait until the next activity-travel decision point. However, it is very likely that the person may 21 
start pursuing the activity early and also potentially finish the activity early, leaving a larger time-space 22 
prism window for engaging in other activities or rescheduling subsequent activities. Thus, sensitivity and 23 
response to actual arrival information is very important in simulating activity-travel engagement and 24 
scheduling decisions for fixed, and more importantly, for non-fixed (discretionary and maintenance) 25 
activities.  26 

Figure 2 presents a framework to accomplish a dynamic integration between an activity-based 27 
travel demand model and a dynamic traffic assignment model. This framework overcomes the above 28 
mentioned limitations of sequential integration approaches by maintaining consistency in the 29 
representation of behavioral units, spatial relationships, and temporal scales. The model design can be 30 
traced to the attempts to integrate an activity-based travel demand model system called PCATS - Prism 31 
Constrained Activity-Travel Simulator – with a micro-meso scale dynamic traffic assignment model 32 
system called DEBNetS - Dynamic Event-Based Network Simulator. Early efforts to integrate the two 33 
model systems adopted the sequential approach with simple input-output flows enabling the 34 
integration (Kitamura et al 2005). A tighter integration paradigm was proposed to overcome the various 35 
challenges associated with sequential approaches (Kitamura et al 2008), wherein the travel demand 36 
model and the dynamic traffic assignment model constantly communicate with each other along a 37 
continuous time axis. The resulting activity-travel engagement decisions are truly emergent and the 38 
decision to engage in activities, and the various activity-travel dimensions including activity type, activity 39 
duration, destination, departure time, route, and arrival time are generated and simulated as they 40 
happen. The design presented here builds on the event-based approach proposed by Kitamura et al 41 
(2008) with major enhancements in the heuristics employed to re-schedule activities in response to 42 
arrival time information.  43 

After obtaining network conditions by time of day from a bootstrapping procedure, the 44 
framework as shown in Figure 2 can be employed to simulate activity-travel decisions. The typical time 45 
resolution of an activity-travel demand model is one minute. Thus the day can be broken down into 46 
1440 intervals in which activity-travel choices need to be simulated for the entire population. Within 47 
each minute, the demand model simulates the activity-travel engagement decisions of all individuals. 48 
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For those individuals that make a decision to pursue an activity away from the current location, trip 1 
information including, origin, destination, mode, and vehicle is extracted and passed to the dynamic 2 
traffic assignment model for loading the trip on the network. The dynamic traffic assignment model 3 
routes the trips and simulates them on the network. The routes are generated in the dynamic traffic 4 
assignment model based on the Wardrop’s principle of user equilibrium (i.e. the trips are assigned to 5 
paths between an origin-destination pair such that the travel time across all paths between the O-D pair 6 
are equal). A dynamic traffic assignment model is usually capable of simulating vehicular movements 7 
and positions at a finer temporal resolution (less than one minute). In order to avoid lumpy loading of 8 
the vehicles onto the network within a one minute simulation, the dynamic traffic assignment model 9 
uniformly distributes the trips across the one minute simulation interval. For example, if the dynamic 10 
traffic assignment operates at a resolution of six seconds, then the trips are distributed uniformly across 11 
the one minute simulation interval and loaded on the network every six seconds.  12 

After loading the trips, the dynamic traffic assignment model simulates the movement of 13 
vehicles on the network. The vehicle’s position is updated at the end of every six seconds. The dynamic 14 
traffic assignment stores network level of service conditions (typically the link travel times, volumes, and 15 
delays, among others). It is theoretically possible for the traffic assignment model system to store 16 
network level of service measures at a resolution of six seconds and then feed those back for the 17 
subsequent iteration. However, it becomes computationally burdensome and it may be behaviorally 18 
unwarranted to store network conditions at such a fine temporal resolution. In addition, it is difficult to 19 
imagine that individuals consider network conditions at a resolution of six seconds when they make 20 
activity-travel decisions. It may be reasonable to store network conditions at the same resolution as the 21 
activity-travel demand model (at a one minute resolution or higher). The vehicular movements are 22 
executed on the network until the trips arrive at their intended destinations. Once the trips have arrived 23 
at their destinations, the dynamic traffic assignment model passes back the arrival information to the 24 
demand model so that the latter can simulate subsequent activity-travel engagement decisions. After 25 
receiving the arrival information, the demand model makes appropriate adjustments to the activity-26 
travel schedule of an individual in response to his or her arrival time and the individual pursues the 27 
activity at the destination before reaching the next activity-travel engagement decision point. Since the 28 
dynamic traffic assignment model operates at a resolution of six seconds, all of the trips that have 29 
arrived at their destination within any one minute interval are collected and then the arrival information 30 
is sent to the demand model.  31 

At the end of the simulation for a day, the network conditions by time of day are processed to 32 
generate origin-destination travel time matrices by time of day for use in the travel demand model, and 33 
time-dependent shortest paths between origin-destination pairs are generated for use in the dynamic 34 
traffic assignment model in the subsequent iteration. The updated network conditions are fed into both 35 
the demand model and traffic assignment model for the next iteration. The process is repeated until 36 
convergence is achieved in both the travel demand and network conditions. It must be noted that the 37 
shortest paths are based on network conditions from a previous iteration because link conditions cannot 38 
be forecast into the future without actually simulating trips (future period network conditions are 39 
needed to calculate time-dependent shortest paths). Similarly, the network conditions from a previous 40 
iteration are used to simulate activity-travel engagement decisions in any given iteration. However, the 41 
arrival time information, based on which activity-travel schedule adjustments and activity engagement 42 
decisions are made, is generated in “real-time” as trips are simulated along the day. 43 

The proposed approach to dynamic linkage between the activity-travel demand system and the 44 
dynamic traffic assignment model has some very behaviorally appealing features. First, arrival times are 45 
determined by “real-time” conditions on the network along a continuous time axis and are not based on 46 
a pre-determined network state from a previous iteration. This process maintains continuity and 47 
consistency in temporal and spatial representation of activity-travel engagement decisions, which is 48 
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often a point of contention in the more naïve sequential approach to integration. Second, the feedback 1 
of network conditions from one iteration to the next mimics a day-to-day learning process wherein 2 
individuals make activity-travel engagement decisions and adjust schedules in response to their travel 3 
experience from the previous iteration. This learning behavior is captured by the outer feedback loop 4 
shown in Figure 2. Finally, the framework lends itself to evaluating policies and scenarios that involve 5 
network dynamics, and understanding the impact of such dynamics on activity-travel engagement 6 
behavior. For example, one can evaluate the impact of traveler information systems, or model the 7 
dissipation of network shocks (incidents) and their effects on individual time use and activity 8 
engagement decisions. Scenarios of network disruption can be setup and evaluated in the proposed 9 
integrated model design because of the dynamic minute-by-minute handshaking which allows one to 10 
capture the scheduling and re-scheduling decisions, and alternative routing decisions that people would 11 
pursue, in response to network dynamics.  If an individual arrived late at a certain destination (say, due 12 
to congestion on the network), then the duration of that activity, as well as the pattern of engagement 13 
in subsequent activities, may be affected.  Certain discretionary activities that would have been 14 
otherwise pursued (had the individual not been delayed) may instead be eliminated to meet various 15 
daily schedule constraints.  The evaluation of such scheduling dynamics in a sequential design would 16 
inevitably entail the use of ad-hoc procedures to modify activity-travel patterns. The proposed design 17 
offers a behaviorally intuitive framework for modeling dynamics associated with the demand for and 18 
supply of transportation systems.  19 
 20 
OPERATIONAL IMPLEMENTATION OF INTEGRATED MODEL DESIGN 21 
The framework presented in the previous section has been used to build an integrated model system 22 
dubbed SimTRAVEL – Simulator of Transport, Routes, Activities,  Vehicles, Emissions, and Land.  In order 23 
to start the microsimulation of the urban continuum, a synthetic population for the entire region is 24 
necessary. In this context, it is important to ensure that the synthetic population not only matches 25 
known distributions of household variables of interest but also known distributions of person variables 26 
of interest. This will ensure that the synthetic population closely matches the household and individual 27 
socio-economic and demographic profiles of the region, which in turn affect the land use, activity-travel 28 
engagement, and route choice decisions. PopGen (Version 1.1) is the synthetic population generator 29 
used in SimTRAVEL (Ye et al. 2009). PopGen is a stand-alone open-source package developed using 30 
Python and is available to the public under the GNU General Public License (GPL) agreement. The land 31 
use microsimulation model that was employed in the development of the SimTRAVEL prototype is 32 
UrbanSim (Waddell et al 2008). UrbanSim is an open-source land use microsimulation model which 33 
comprises of a series of models that simulate the location choices of households, persons, businesses, 34 
real-estate agents while explicitly considering the zoning policies and restrictions that built 35 
environments experience. UrbanSim is also developed using Python and available under the GNU GPL 36 
agreement.  37 
 The travel demand microsimulation model system incorporated in SimTRAVEL is OpenAMOS. 38 
OpenAMOS is an open-source activity-based travel demand model system which generates the daily 39 
activity-travel patterns of individuals. OpenAMOS builds on a long legacy of activity-based model 40 
development (Pendyala et al 2005, Kitamura et al 2005). Some fundamental behavioral paradigms, such 41 
as the explicit modeling and recognition of time-space prism vertices, have been preserved in 42 
OpenAMOS from the legacy implementation. However, OpenAMOS enhances the earlier model 43 
framework to account for child dependency and allocation processes, intra-household activity-travel 44 
engagement interactions, and multi-modal travel simulation. OpenAMOS is implemented in Python and 45 
is available to the public under the GNU GPL agreement.  46 
 Finally, the dynamic traffic assignment (DTA) microsimulation model system that was deployed 47 
in the integrated model prototype is MALTA (Multi-Resolution Assignment and Loading of Traffic 48 
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Activities) (Chiu and Villalabos 2008). The traffic assignment process is handled by a new Hierarchical 1 
Time Dependent Shortest Path (HTDSP) algorithm for the highway modes, and a new microsimulation 2 
model for the transit modes. The MALTA model system is primarily written in C++. The model system is 3 
also open-source, similar to other packages that are used in the development of the prototype, and is 4 
available to the public under the GNU GPL agreement.  5 
 6 
Convergence Criterion 7 
The demand and supply model systems are run iteratively with feedback loops, and hence convergence 8 
criteria need to be established to stop the iterative process. While the concept of convergence and 9 
stopping criteria are well established in the field of traffic assignment, the concept is relatively less 10 
established in the travel demand modeling arena. On the demand side, every simulation run represents  11 
one stochastic realization of the underlying activity-travel behavior, and convergence is neither 12 
monitored nor characterized across loops of a feedback procedure. Traditionally in traffic assignment 13 
models, convergence is monitored by comparing origin-destination travel time matrices (Boyce and Bar-14 
Gera 2003) or by comparing a gap measure (Rose et al 1988) across iterations, and the iterative process 15 
is stopped once the difference in the convergence measure across iterations is small.  16 

In addition to monitoring convergence on the traffic assignment side, it is also important to 17 
monitor convergence on the travel demand side as well.  This is because, in the proposed design, the 18 
number of iterations required to achieve convergence in the traffic assignment model will be directly 19 
dependent on the extent to which activity-travel patterns vary across iterations. In the system 20 
prototype, convergence on the travel demand end is monitored by comparing aggregate O-D matrices 21 
across iterations. In the future, it is envisioned that more disaggregate measures of convergence may be 22 
monitored.   23 

In any iterative process, there is always a concern of feedback measures oscillating across 24 
iterations and leading to unstable and inefficient characterization of convergence. Boyce and Bar-Gera 25 
(2003, 2006) suggest the use of averaging techniques in feedback processes to avoid oscillations and to 26 
proceed towards convergence more efficiently. In the proposed design, the time-varying link attributes 27 
are averaged across iterations. The link attributes were selected because they are used to generate O-D 28 
travel time matrices for use in the travel demand model and update time-dependent shortest paths for 29 
use in the dynamic traffic assignment model for the next iteration.  30 
 31 
Case Study Test Site  32 
Initial tests of the prototype are being conducted for a three city subarea in the southeast region of the 33 
Phoenix Metropolitan region. The subarea covers the City of Chandler, Town of Gilbert, and Town of 34 
Queen Creek. There are about half a million people (505350) in this subarea residing in 167738 35 
households. Although activity-travel engagement decisions are being generated only for the three city 36 
region in OpenAMOS, the dynamic traffic assignment model (MALTA) is utilizing the entire network of 37 
the Phoenix Metropolitan region for routing and simulation. Therefore, in an effort to reflect the 38 
presence of congestion on the network, the background traffic that is generated by the population 39 
outside the study area was also loaded. Background traffic was incorporated by disaggregating peak- 40 
and off-peak O-D matrices obtained from the four-step travel model for the region into trip lists by 41 
employing temporal distributions from the latest National Household Travel Survey. In each time step, 42 
the disaggregated trip lists were then added as background traffic to supplement the demand generated 43 
by OpenAMOS for the subarea and thus capture real world network conditions. 44 
 45 
RESULTS 46 
Within the scope of this paper, it is impossible to provide comprehensive results of the case study 47 
application of SimTRAVEL.  Such a comprehensive case study description will be the primary focus of a 48 
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future paper.  Interested readers may view more detailed results of various tests and model runs at the 1 
SimTRAVEL wiki site (ASU, 2011).  Within the context of this paper, and relevant to the description of the 2 
design, two key measures are examined and discussed here.   3 
 One of the major design objectives of the tightly integrated model design was to ensure that 4 
time of day distributions of activity-travel engagement were accurately replicated by the model system.  5 
In the dynamic integrated model design, activity start times get adjusted in response to actual arrival 6 
times at destinations simulated by the dynamic network model.  In other words, one of the key aspects 7 
of the design is the ability to accurately replicate time of day distributions of travel.  Now, if the origin-8 
destination travel time matrices are very accurate representations of travel times one would actually 9 
experience in the network, then it is unlikely that the dynamic model design and the sequential model 10 
design would yield differing results.  This is the because the travel time matrices that dictate time of day 11 
distributions in the sequential model design would be very similar to actual travel times experienced by 12 
travelers in the network as simulated by the dynamic integrated model design.  However, the question 13 
remains whether the dynamic integrated model design, with all of its schedule adjustments in response 14 
to network arrival times, would be able to accurately replicate true time of day distributions of travel in 15 
the region.  Figures 3 and 4 show time of day distributions of trip start times for adult workers and adult 16 
non-workers respectively. It can be seen that the time of day distributions for these two demographic 17 
groups compare remarkably well against values derived from the latest edition of the National 18 
Household Travel Survey.  For workers, one can see the typical peaks in the morning and evening with a 19 
smaller peak in the noon period, presumably due to the lunch hour. For non-workers, the distributions 20 
also match extremely well, although it appears that SimTRAVEL is yielding a slight over-prediction of 21 
trips between 11:00 AM and 5PM and a slight under-prediction of trips beyond 8 PM.  These extremely 22 
good matches in time of day distributions suggest that the dynamic design is able to represent broad 23 
temporal patterns of travel demand.  It should be noted, however, that the true merits of the proposed 24 
design can only be assessed when the model system is applied to a scenario in which the network is 25 
subjected to a perturbation and disaggregate results from the activity-travel simulation process are 26 
examined to the fullest extent.  27 
 Another key dimension of the integrated model design is investigated through the information 28 
in Figure 5.  This figure compares the overall trip rates for maintenance and discretionary activities for 29 
worker and non-worker segments.  The comparison is made between trip rates provided by the 30 
sequential model design and the dynamic integrated model design described in this paper.  In virtually 31 
all cases, it is found that the sequential model design is yielding a higher trip rate than the dynamic 32 
integrated model design.  In fact, the dynamic integrated model design generated a total of 1.456 33 
million trips for the subarea that constitutes the test area, while the sequential model design generated 34 
a total of 1.506 million trips. It appears that the sequential model design may not accurately capture the 35 
adjustments in activity engagement that people make as a result of experienced travel times being 36 
different from expected travel times.  When an actual arrival time is later than an expected arrival time, 37 
then the remaining time in the open time-space prism is less than what would be otherwise available.  38 
As a result of this shrinkage of the time space prism, an individual might forego undertaking an 39 
additional activity, and instead, postpone the activity to the next day.  This type of activity generation 40 
adjustment is not reflected in the sequential model design.  As a result, the average trip rates for non-41 
mandatory activities are higher in the sequential model design than in the dynamic integrated model 42 
design.  Indeed, one should note that, if the expected travel times closely replicate actual travel times 43 
that would be experienced on the network, then these differences would be negligible.  However, the 44 
dynamic integrated model design ensures that effects of network congestion, that would inevitably 45 
impact arrival times, are accurately captured in simulating activity engagement behavior of individuals.   46 
 Now, it is entirely possible to argue that even a sequential model design can replicate patterns 47 
without much difficulty as long as expected travel times (in the skim matrices) are accurately reflecting 48 
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true travel times in the network.  The issue, however, is not whether a sequential model design 1 
accurately replicates network conditions and travel demand under normal conditions.  The question is 2 
whether a simpler naïve sequential model design can replicate behaviors and network conditions when 3 
a shock or policy is introduced in the system in the middle of a day (simulation).  From a pure conceptual 4 
standpoint, the dynamic integrated model design presented in this paper would have the ability to 5 
simulate adjustments in schedules and behaviors that would follow such an event.  It would be virtually 6 
possible for a sequential design to mimic such behavioral adjustment processes.     7 
 The results demonstrate the feasibility of the integrated modeling approach presented in this 8 
paper. An issue that merits further exploration is that of computational tractability. Run times are 9 
naturally dependent on the hardware configuration.  On a standard quad-core personal computer 10 
workstation, run times for a simulation of just over 15 million trips are on the order of about 24 hours 11 
per complete iteration, with the dynamic model design taking on the order of about 3-4 hours longer 12 
than a sequential model design run.  It is envisioned that these run times will come down as computing 13 
power improves and parallel computing capabilities are harnessed to the extent possible.   14 
 15 
CONCLUSIONS 16 
This paper presents an integrated land use – transport model system design that incorporates a tight 17 
dynamic coupling between an activity-based microsimulation model system of travel demand and a 18 
dynamic network assignment and simulation model of network supply.  Although there have been 19 
considerable developments over the past decade in the integrated transport model formulation arena, 20 
the implementation of a tightly integrated model system has remained a major challenge to the 21 
profession.  There are many emerging policy questions that call for an integrated transport demand – 22 
supply model system capable of responding to changing network conditions through the course of a 23 
day.  In the event of unexpected congestion (say, due to an incident), travelers may arrive at their 24 
destination location later than expected.  This late arrival would have cascading effects on the 25 
subsequent activities, destinations, and durations.  Through a tightly integrated model design, it is 26 
possible to reflect the effects of such network dynamics on emergent activity-travel behavior.  Similarly, 27 
in the event that intelligent transportation systems or dynamic pricing strategies are deployed, travelers 28 
may be able to arrive more quickly at their destinations than originally anticipated.  The additional time 29 
that becomes available to the traveler may lead to induced travel or activity engagement. This 30 
comprises shorter-term induced or suppressed demand in response to network conditions. Additionally, 31 
an integrated model system that can account for longer-term land use changes on the transport system 32 
would be of considerable value to the profession which is constantly grappling with the complex inter-33 
relationship between land use development and network accessibility. The integrated model system 34 
presented in this paper is able to capture both shorter-term and longer-term impacts noted above.  35 
 The integrated model design described in this paper is a continuous time model system capable 36 
of simulating activities and travel patterns in response to actual network conditions experienced by 37 
travelers as they execute their daily activities and travel in time and space.  The model operates at the 38 
level of resolution of one minute. In each minute of the day, the activity-travel demand model provides 39 
the network supply model the list of trips that need to be routed to their destination, while the network 40 
supply model returns the list of trips that have arrived at their destination locations.  This results in 41 
dynamic interaction between the demand and supply models on a minute by minute basis.  The model 42 
system includes algorithms to facilitate convergence, and the final accessibility measures from any single 43 
simulation year inform the land use choices of a subsequent simulation year.  Thus, the model design 44 
accommodates the time lags that are inevitably involved in land use changes in response to changes in 45 
network conditions.  The integrated land use – transport model system explicitly recognizes that 46 
different choice processes operate on different temporal and spatial scales.   47 
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 The model system has been implemented as an open source software package and a prototype 1 
has been tested in a three city jurisdiction of the southeast region of the Greater Phoenix metropolitan 2 
area.  The model system is found to perform quite well in replicating observed activity-travel patterns as 3 
reported in national travel survey data.  The results are quite promising and the model design appears to 4 
provide a conceptually appealing framework for tying together microsimulation model systems of 5 
activity-travel demand, network supply, and land use.  It should be noted, however, that the richness of 6 
the specification of the model system dictates the extent to which the model system can be used to 7 
analyze the effects of alternative policies or socio-economic shifts.  In other words, the model design 8 
presented in this paper is not a substitute for the adoption of rich specifications that include numerous 9 
explanatory variables capturing the effects of socio-economics, demographics, built environment 10 
attributes, and policy interventions. Future work in this arena should be aimed at addressing 11 
implementation challenges and issues that inevitably arise when large-scale integrated microsimulation 12 
model systems are being transitioned into practice.   Issues of data availability, disaggregate and 13 
aggregate validation, convergence, sensitivity to alternative policies and built environment changes, and 14 
computational tractability need to be tackled before model systems of the nature described in this 15 
paper can be implemented in the real-world.    16 
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 1 

Figure 1. Overview of the Framework for Integrating Travel Demand and Supply Models2 
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Figure 2. Conceptual Overview of the Framework for Integrating Travel Demand and Supply Models 
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Figure 3: Time of Day Distribution of Trip Start Time for Workers 

 

 
Figure 4: Time of Day Distribution of Trip Start Time for Non-workers 
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Figure 5. Difference in Average Trip Rates Between Sequential and Dynamic Integrated Model Runs 
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