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ABSTRACT

Tour-based microsimulation model systems are seeing increasing application for forecasting activity-
travel patterns under a wide range of policy and system scenarios. In such models, the tour is the unit
of analysis, thus offering a framework to account for inter-linkages across trips in a tour. This paper
focuses on examining the relationship between two dimensions of tours, the type of vehicle (in a
household that owns multiple vehicles of different types) chosen to undertake the tour and the overall
length (distance traveled) for the tour. These two dimensions are of much interest in the current
planning context where concerns about energy sustainability and greenhouse gas emissions are
motivating planners to seek ways to mitigate the adverse impacts of automotive travel. Moreover,
virtually all tour-based models currently used in practice do not explicitly account for vehicle type choice
in modeling tour attributes, despite its critical importance for energy and emissions analysis. This paper
presents a joint discrete-continuous model of tour vehicle type choice and length. Estimation results
suggest that there are significant common unobserved factors that affect vehicle type choice and length
of tours, justifying the use of joint simultaneous equations modeling approaches to model tour
attributes. It was found that the model specification in which vehicle type choice affects tour length
performed better than the specification in which tour length affects vehicle type choice, suggesting that
vehicle type choice (and allocation among household members) is a longer term choice that influences
shorter-term tour length choices.

Keywords: tour-based models, vehicle type choice, tour length, joint modeling, discrete-continuous
models, causal relationship, error correlation
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1. INTRODUCTION

There has been a growing interest in the application of microsimulation approaches to travel demand
modeling and forecasting. Microsimulation models of travel demand simulate the activity-travel choices
of individuals recognizing the inter-dependence among activities, trips, and persons subject to the
various spatial, temporal, and resource constraints that individuals experience (Arentze et al 2000). The
literature on travel demand modeling and forecasting is replete with examples of activity- (Kitamura and
Fujji 1998, Pendyala et al 2004, Pinjari et al 2004) and tour- (Bowman and Ben-Akiva 2000, Vovsha et al
2002, Miller et al 2005, Bradley et al 2009, Yagi and Mohammadian 2009) based approaches that
purport to represent and simulate individual activity-travel behavior. Alternative model systems may
differ in the nature of the behavioral paradigm underlying the model, but the unit of analysis is
invariably a trip chain or tour to explicitly recognize the inter-dependency of trips within a tour.

There have been a number of successful implementations of tour-based model systems both in
the US and elsewhere (Algers et al 1995, Vovsha et al 2002, Bowman and Bradley 2006). Most of the
tour-based models consider (to differing degrees) some basic dimensions that characterize tours
including primary activity type, location, number of stops and identification of stop locations on the
tour, sequencing and scheduling of stops, and mode choice at both the tour- and individual trip- level.
Some models are also attempting to explicitly consider intra-household interactions to explicitly account
for passenger accompaniment in simulating household tours. There is virtually no tour-based model,
however, that explicitly includes choice of the type of vehicle used to undertake the tour. Given that the
type of vehicle used (in terms of body type, fuel type, and/or vintage) and total distance traveled on a
tour are two critical factors determining energy consumption and greenhouse gas (GHG) emissions
(Hensher 2008, Spissu et al 2009), this paper focuses on the relationship between these two tour-level
dimensions of interest.

Household vehicle ownership (and utilization) by type of vehicle has been the focus of several
recent research efforts (Mohmmadian and Miller 2003, Bhat and Sen 2006, Cao et al 2006, Eluru et al
2010). However, much of this work is aimed at examining the household vehicle type holdings, the mix
of vehicle types in a household fleet, and the overall utilization (mileage) of vehicles. While that work
offers a valuable basis to represent overall household vehicle fleet ownership choices and vehicle
utilization patterns, it does not provide the level of disaggregate detail that planners desire to analyze
vehicle type choice and usage patterns at the individual tour level. Many households have different
types of vehicles, including large utility vehicles or minivans, and smaller fuel-efficient compact cars or
hybrid-fuel vehicles. One needs to understand the usage patterns of each vehicle type at a tour level so
that demand characteristics can then be closely tied to their associated environmental impacts.

In most of the tour-based model implementations, a number of models are estimated to mimic
the different choice dimensions of individual’s tour making behavior. The models are often implemented
sequentially (with logsum feedback loops) to simulate the different tour characteristics. Such a
sequential application of models inherently involves making two assumptions. First, it assumes that tour
attributes can be modeled independently without accounting for common unobserved factors (error
correlations) that may simultaneously impact multiple tour attributes. Second, the sequential
application assigns an order to the decision making behavior of individuals. However, in reality, people
may make tour-related decisions jointly. It is of considerable interest and importance then to model
different tour-attributes jointly using advanced simultaneous equation modeling frameworks (Pendyala
and Bhat 2004, Ye and Pendyala 2009). The joint modeling approaches not only lend themselves to
modeling different tour dimensions simultaneously but they also allow one to accurately represent
decision making behavior by accommodating error correlations across tour dimensions which exist due
to common unobserved variables (Mannering 1986).

This paper presents a joint model of vehicle type choice and tour length for automobile tours
undertaken by individuals in households that have a mix of vehicle body types. In this context, there are
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interesting questions regarding the relationship between vehicle type choice and tour length that arise.
The joint consideration of vehicle type choice and tour length explicitly accounts for the endogeneity of
tour length in the vehicle type choice process and vice-versa. Does vehicle type choice affect tour length,
or does tour length affect vehicle type choice? Or is there a more contemporaneous relationship
between these two choice dimensions that makes it impossible to choose one specification over the
other? Interesting policy outcomes arise in the context of these questions. Consider the situation
where tour length affects vehicle type choice, wherein shorter tour lengths are associated with the use
of larger vehicle types that consume more energy and pollute more. In that situation, policies that
promote land use density may actually have a counter-intuitive effect of not providing the intended
benefits from an environmental perspective. If enhanced land use density results in shorter vehicle tours
that households can monetarily afford to undertake using large utility vehicles, then the policy may not
yield the intended environmental benefits. Similar policy implication arguments can be made for the
reverse situation where vehicle type choice impacts tour length. Say, one provides tax incentives for the
purchase of a fuel efficient automobile that motivates households to purchase such vehicles. Individuals
can now monetarily afford to drive more miles using the fuel efficient vehicles, thus negating at least
some of the potential benefits of incentives provided to households to acquire fuel efficient vehicles.
Not only does this joint model system offer insightful policy implications, but it also offers a mechanism
for incorporating vehicle type choice explicitly in emerging tour-based models — this choice dimension is
often lacking in current models.

The paper utilizes a sample of tours undertaken by individuals in households that own a mix of
vehicle types drawn from the 2009 National Household Travel Survey (NHTS) dataset of the United
States. A joint model of vehicle type choice (discrete choice variable), and tour length (continuous
choice variable) was estimated. A probit-based discrete-continuous model specification and simulation-
based estimation approaches were employed. The methodology accommodates potential error
correlations across choice dimensions due to the presence of common unobserved attributes. There are
a number of discrete-continuous modeling methodologies in the literature (Pendyala and Bhat 2004, Ye
and Pendyala 2009). Unlike some of the earlier discrete-continuous frameworks which make
distributional transformations for ease of estimation (Bhat 1998, Pendyala and Bhat 2004), the probit-
based approach accommodates error correlations by assuming a multivariate normal distribution
structure. The authors have successfully used this approach in previous work to shed light on multiple
choice dimensions underlying activity-travel demand (Ye and Pendyala 2009, Konduri et al 2010). The
paper also modifies an earlier non-nested hypothesis test (Ye and Pendyala 2009) and uses it to
compare alternative joint discrete-continuous specifications.

The remainder of the paper is organized as follows. The probit-based methodology and the
modified non-nested hypothesis test are presented in Section 2 followed by a description of the data in
Section 3. Model estimation and hypothesis test results are presented in Section 4 followed by
conclusions in Section 5.

2. METHODOLOGY
This section presents an overview of the modeling methodology used in this study.

2.1. Model Formulation

The probit-based methodology adopted in this paper is presented only briefly here as complete details
may be found elsewhere (Ye and Pendyala, 2009). The formulation is presented for a discrete choice
variable with three choice alternatives. However, the formulation can easily be extended to
accommodate discrete choice variables with any number of alternatives, although the estimation
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becomes increasingly computationally cumbersome with additional choice alternatives. The system of
equations for the discrete-continuous model system may be formulated as:
ul* =x1f; +01d + ¢
uz*:)(fzﬁz +52d+82 (1)
uy  =x3p3 +e3
d = z0 + /lly1+/12y2+a)
where u1*, Mg*, u3* are the latent utility functions for three alternatives corresponding to the discrete
choice variable. 8, , S, B; are the coefficient vectors corresponding to the exogenous variables x;, x,, x;
on the right-hand side of the latent utility functions. d is the continuous choice variable and enters the
utility functions of the discrete choices with coefficients d;, d,. z is a vector of explanatory variables
influencing d with a coefficient vector 6. y; and y; are indicator variables corresponding to the first and
second discrete choice alternatives and are defined as follows:
v, =1(u; >u,andu, >u;) @)
v, =1(uy > u; andu; > u})
where y; and y, assume a value of 1 if the conditions in the parentheses are satisfied and 0 otherwise. 4;
and 4, in Equation (1) are the coefficients corresponding to indicator variables y; and y,. For the above
model to be identified, either the 1 or the  parameters must be restricted to zero, and this results in
two alternative model structures: (i) 4; and A, equal to zero, corresponding to the joint model
specification where the tour length affects vehicle type choice for the tour, and (ii) d; and J, equal to
zero corresponding to the joint model specification where vehicle type choice affects tour length.
The random error terms ¢;, €, €;, @ in the model are assumed to be multivariate normally
distributed with the variance-covariance matrix as shown below:

1 0 0 vy
0 1 0

Y- V2 3)
0 0 1 g

Vi 72 V3 o’

It can be seen from the variance-covariance matrix above that the emphasis in the model
formulation is to accommodate the error correlations between the discrete choice alternatives and the
continuous choice variable and the variance-covariance components corresponding to the discrete
choice are fixed as shown. Theoretically, one could potentially identify two additional parameters of the
six covariance elements corresponding to the discrete choice variable in the matrix. However, in this
paper, the error correlation structure is limited to that shown in equation (3). The notation in Equation
(1) may be simplified as shown in Equation (4):

*
Uj =Vl + &
*
U, =V, +e¢
2>!< 2 2 (4)
us =V3 + &3

d =U+ye +y36y +y363 +0¢
where V;, V5, V3 constitute the deterministic part of the latent utility functions and U represents the
deterministic component of the continuous model. The random error term in the continuous model has
been parameterized as a linear combination of ¢, &, €;, and &, where £ is a random error term that is
standard normally distributed and is independent of ¢, &,, and &;. o” is assumed to be equal to (o2 - 7/12
- 722— }/32) so that the covariance structure shown in equation (3) is preserved in the modified notation.
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Let V;, represent the difference in the deterministic components of the latent utility functions of
discrete alternatives 1 and 2, i.e., V;;, = V; — V5. Similarly V;3 = V; — V5. One can then derive a joint
discrete-continuous probability function conditional on ¢;, &,, €;. Equation (5) illustrates the probability
formulation for discrete choice alternative 1 (y; = 1). The probability formulations for the other discrete
choice alternatives can be derived in a similar manner.

Pr(y, =14d|¢) = Pr(ul* > u;,ul* > u3*,d\ €,)

Pr(e, <V, +¢e,6;,<V,; + ¢&.d ¢)

Pr(e, <V, +¢e,6;<V,; + ¢leg)x
Pr [(d| g, <V, +e,e,<V; + 81)|81]
= [¢(V12 +e)o WV, + 81)]X

{1_¢(d_U _7181_7282_7383j

g, <V, +e,e,<V; + 81}.
o o

#.) and @(.) in equation (5) denote the probability density function and the cumulative
probability density functions respectively. The unconditional probability for discrete choice alternative 1
may then be derived by integrating the probability function over the distributional domains of ¢, &, &;.
As can be seen, the distributional domain of ¢; extends from - to «, ¢, extends from -0 to V;, + ¢;, and
&; extends from -oo0 to V3 + ¢;. The unconditional probability does not have a closed form solution and
simulation based techniques may be employed to evaluate the unconditional probability. In order to
simulate the unconditional probability, randomly draw g, (r = 1, 2, ... R) from a standard normal
distribution and let &, = @ '[uy, @ (Vio+ &,)] and &, = @ us, @ (Vi3+ &,)], where uy, and us, are two
independent draws from a standard uniform distribution. &, and &; are now draws from the
corresponding truncated normal distributions for & and &. By repeating this procedure R times, the
unconditional probability function may be approximated as:

Pr(y,=1,d)

; o B _ 6
B~ {z ¢(V12 + 81;~)‘D(V13 + Elr);'¢(d ’ i '}/ZSZV o j}/R )

r=1 o

The unconditional probability functions for the other two alternatives of the discrete choice
variable may be derived in an analogous manner. The Maximum Simulated Likelihood Estimation (MSLE)
procedure can then be applied to estimate the parameters using quasi-random Halton sequences (Bhat
2001).

As with any joint discrete-continuous model system, careful consideration must be given to
issues of identification and normalization. To avoid any issues with normalization it is recommended
that the y in Equation (3) with the smallest absolute value be normalized to zero. This assumption is
consistent with Walker (2002) and a detailed discussion on the normalization assumption and its validity
is presented elsewhere (Ye and Pendyala, 2009).

The model formulation presented above can be applied to any discrete-continuous type
problem where the choice set of alternatives is constant for all decision makers. However, in this
particular study, the discrete variable considered in the analysis — vehicle body type — may vary across
decision makers (as different households own different vehicle fleets). Therefore, the methodology
described above is modified to accommodate varying choice sets. Let k;, k, k; be three indicator
variables denoting the availability of each of three choice alternatives for the decision maker. The
indicator variable assumes a value of 1 if a particular choice alternative is available and 0 otherwise. The
deterministic component in the original utility expressions may be modified as:
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w, = kx, B+ (L= ky)(—0) + 6,d + ¢,
w, = kX, By + (1= ky )(—0) + 6,d + &,
uy, =kyx, By + (1= ky)(—0) + ¢,

d =z0+A4y,+4,y,+0

(7)

It can be seen that whenever an alternative is available, the deterministic component of the utility
remains the same as in the earlier formulation. However, if a particular alternative is not available then
the alternative is made highly unattractive (by adding a very large negative value). As a result the
probability of any missing alternative (vehicle type) being chosen is forced to be zero. One can then
proceed with the model estimation by using the modified deterministic components. Thus the model
formulation presented in Equation (7) can accommodate varying choice sets for the discrete choice
model component in a joint discrete-continuous problem.

2.2. Non-nested Hypothesis Test
As mentioned earlier, based on whether the parameter 4 or ¢ is set to zero, two different specifications
of the joint discrete-continuous models arise. It is entirely possible that both specifications of the joint
discrete-continuous model will provide behaviorally plausible results with statistical goodness-of-fit
measures that are quite similar. Therefore, rigorous statistical hypothesis tests are required to compare
alternative model specification and choose the appropriate model specification.

One cannot use standard likelihood ratio tests when model specifications are non-nested. One
of the earliest tests to compare models from different families was proposed by Cox (1961, 1962).
Horowitz (1983) presented a more compact form of the Cox test for comparing non-nested discrete
choice models. The test was modified by Ben-Akiva and Swait (1984) to accommodate the comparison
of standard goodness-of-fit statistics obtained from discrete choice model estimation results. This test
has been applied to compare both single equation (McCarthy and Tay 1998) and simultaneous equation
model systems (Pendyala and Bhat 2004, Ye et al 2007). However, the test was initially proposed to
compare single equation discrete model systems and its appropriateness for comparing simultaneous
equation model systems is unknown. In order to address this issue, Ye and Pendyala (2009) proposed a
new hypothesis test for comparing non-nested joint discrete-continuous model systems. However, their
hypothesis test is not applicable when the set of alternatives for the discrete choice varies across
decision makers. In this paper, a modified version of the non-nested hypothesis test is proposed for
comparing non-nested joint discrete-continuous model systems where the choice set for the discrete
choice varies across decision makers.

According to Horowitz (1983), the probability that the goodness-of-fit statistic for a model B is
greater than the goodness-of-fit statistic for model A by a value ¢ > 0 assuming that model A is the true
model is asymptotically bounded as:

2 2
Pr| p,—p, >1t|< @[—\/—2&] (8)

where
2

/_)m = likelihood ratio index for model m and is calculated as shown in Equation (9)

L,, = log-likelihood function value for model m at convergence
K,, = number of parameters being estimated in model m
L" = log-likelihood function value of model m when all the parameters are assumed to be zero
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p=l-— i )

In the original formulation of Horowitz (1983), L" was defined as N In(//J) where N is the
number of observations and J is the number of choice alternatives. In the hypothesis test proposed by
Ye and Pendyala (2009) for comparing non-nested joint discrete-continuous models, a modified L was
proposed. The modified L was comprised of two components as shown in Equation (10).

L' (Joint Model )= L' (Continuous Model )+ L' (Discrete Model ) (10)

The equations for calculating L* for the continuous and discrete model components are shown in
equations (11) and (12) respectively:

L' (Continuous Model)= —NT_l - Nln(\/ 2z 8‘) (11)

where o = standard deviation of the continuous variable

L (Discrete Model ) =-N ln(J ) (12)

As can be seen in equation (12), the formulation of L" for the discrete choice assumes that the choice
set is the same for all decision makers. In order to accommodate varying choice sets for different
decision makers, the following form is proposed for the contribution of the discrete model component
toL".

L (Dlscrete Model Zln (13)

where j; is the number of choice aIternatlves in the choice set for individual observation i. Therefore,
the modified L” value for the joint discrete-continuous model with varying choice sets for the discrete
choice variable is given by:

L (JointModel)_ - NTl -N ln( j Z ln (14)

Substituting equation (14) in equation (8) gives the following form for the probability statistic and its
asymptotic bound:

_2 _2 N 1
Pr{pg—pA >t}$d§ —\/—2(—T—Nln( j Zln M ] (15)

Using this formulation, one can compare non-nested discrete-continuous model specifications with
varying choice sets across decision makers.

3. DATA SET AND SAMPLE COMPOSITION

In this paper, data drawn from the 2009 National Household Travel Survey (NHTS) of the United States is
used. Only home and work-based tours are considered as these two locations are often considered
anchors of trip making. The subsample employed for analysis in this paper includes only those tours
made by individuals residing in households that own multiple vehicles of different body types. In
addition, the analysis is limited to the modeling of automobile-only tours undertaken by individuals of
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driving age (15 years or above) on regular weekdays (Monday through Thursday). This resulted in a total
of 102,352 tours performed by 64,568 respondents residing in 37,938 households. The average number
of tours per person was about 1.6 and that per household was nearly 2.7.

Nearly 29.4 percent of all tours were home-based work (HBW) tours, 64.5 percent were home-
based non-work tours (HBNW), and about 6.1 percent were work-based tours mostly comprising of eat-
lunch activities pursued by employed individuals between work episodes. The HBNW tours are of
particular interest in this study because people potentially have greater flexibility in the choice of
destinations (and therefore distance traveled) and vehicle type for these tours as opposed to home-
based work tours and work-based tours which are more temporally and spatially constrained. Also, in
order to avoid the inflation of t-statistics resulting from the use of a very large sample dataset that may
lead to erroneous inferences, a random sample of a little less than 10 percent of the 66,030 home-based
non-work tours was selected. The subsample comprised of 6,478 tours and all descriptive analysis and
model estimation results presented from this point forward correspond to the use of this random
sample.

Table 1 provides a summary of some key variables at the tour-, household-, and person- level.
Each HBNW tour involved an average of 1.7 stops with average travel duration of 37 minutes and
average tour length of 15.7 miles. On an average, there were about 1.7 persons on each tour. If one
were to observe the descriptive statistics at the household level, the averages may appear to be a little
higher than in the general population, but this is presumably because the sample consists exclusively of
multiple vehicle households that own a mix of vehicle body types. Such households are likely to be
larger with a greater number of children. On average, there are nearly three persons in a household with
one child. Most of the households in the sample (68 percent) reside in urban areas. There is a slightly
higher percentage (56 percent) of females than males. This may be due to the higher number of
household maintenance and serve-child activities that women generally undertake compared to men.

Table 2 provides a distribution of tour characteristics by vehicle type chosen. As expected, larger
vehicle body types (van, sports utility vehicle) are typically associated with larger vehicle occupancy
compared to other vehicle types. Households probably like to use larger vehicles for trips involving
multiple individuals in the traveling group. It is interesting to note that, when the vehicle fleet
composition of the household is ignored, car appears to be the preferred body type, being chosen for
nearly 42 percent of the HBNW tours. The car vehicle type is followed in preferential order by sports
utility vehicle (SUV), pickup truck and van. It is also found that the difference in tour lengths across
vehicle types chosen for the tour appears to be only marginal. These statistics might give one the
impression that vehicle type choice and tour length have no relationship. However, the differences in
tour length across vehicle types are more pronounced when one controls for vehicle fleet composition.
Whenever van is part of the household vehicle fleet, it appears to be the preferred alternative. In
households where both a car and a SUV are present, SUV is chosen for more tours than car. The pickup
truck appears to be the least preferred vehicle type. Pickup trucks may not be used as commonly as
other vehicle types for routine HBNW tours. Tours where SUV is the chosen body type have the highest
occupancy, followed in order by van, car and pickup truck. These findings show that one needs to
consider the vehicle availability (fleet composition) choice set when attempting to model the
relationships between vehicle type choice and other tour attributes. Otherwise, one is merely observing
the average characteristics resulting from the assumption that all vehicle types are available to every
decision maker.

4. MODEL ESTIMATION RESULTS

Joint discrete-continuous models of vehicle type choice and length were estimated for HBNW tours
using the modified formulation presented in Equation (7). The vehicle type choice is modeled as a
multinomial probit model and the tour length is modeled as a log-linear regression model. The vehicle
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type choice included four discrete choices, namely, car, van, SUV, and pickup truck, with pickup truck
considered the base alternative. Independent models with no error correlations across the choice
dimensions were also estimated for assessing the benefits of joint modeling framewaorks in this context.
The coefficient estimates from the independent models served as the starting values for estimating the
joint models. The MSLE procedure was used for estimating the coefficients in the joint model using 100
guasi-random Halton sequences (Bhat, 2001).

In this study, two alternative joint discrete-continuous model specifications were explored. In
the first model specification, tour length was assumed to affect vehicle type choice. In the other model
specification, vehicle type choice was assumed to affect tour length. The two model specifications are
behaviorally plausible and could potentially provide a way to evaluate some interesting policy outcomes.
According to the first specification, an individual may choose a set of destinations to visit during a tour —
in other words he or she determines the distance to travel, and then chooses the type of vehicle
dependent on the distance. For longer distances, an individual may choose to use the more fuel efficient
vehicle for monetary benefits or the larger less fuel efficient vehicle for comfort and capacity. For
shorter distances, the individual may be indifferent to the type of vehicle. In the second model
specification, one is postulating that individuals within a household probably have a car assigned to
them based on their household roles. For example, in a household with a car and van, if the female head
in the household is responsible for chauffeuring kids, then she may be allocated the larger vehicle (van),
whereas the car may be assigned to the male head of the household. If that is the case, then the choice
of tour length (destinations) may depend on the type of vehicle that the person is assigned (and drives
primarily). The male head of the household may choose to travel farther because he is driving the
smaller more fuel efficient vehicle (and it is monetarily affordable to do so), or may choose to drive
short distances because the small car is not as comfortable as the large vehicle. Table 3 provides model
estimation results for the specification where the tour length is assumed to affect the vehicle type
choice, and Table 4 provides results of the specification where vehicle type choice is assumed to affect
the tour length. The tables include estimation results for both independent and joint models.

4.1. Non-nested Hypothesis Test
It is found that both model specifications presented in Tables 3 and 4 offer plausible results. In order to
select an appropriate model specification that best fits the data, the non-nested hypothesis test
presented earlier was applied. The model with higher likelihood ratio index is generally selected as the
appropriate one. The test gives bounds on the probability that the incorrect model is selected when one
does so. In this study, the joint model where vehicle type choice affects tour length produces a higher
likelihood ratio index. The non-nested test indicates that the probability with which this model will be an
incorrect model is less than 0.007. Therefore the model where the vehicle type choice affects the tour
length can be regarded as the more appropriate model specification. This supports the notion that
households probably allocate vehicles among household members a priori at a higher longer-term
choice dimension level, and then individual tour destinations and travel distance are dependent on the
type of vehicle the person is allocated, other tour attributes such as accompaniment type and number
of stops on the tour, and usual socioeconomic characteristics. The joint model specification where the
vehicle type affects the tour length also has significant error correlations (discussed further later)
pointing to the need for modeling the choice dimensions using a simultaneous equations framework
that can explicitly accommodate error correlations across choice dimensions. As this model specification
is best supported by the data, the remaining discussion focuses on findings reported in Table 4.

From a more qualitative perspective, an examination of the statistical significance of coefficients
associated with right hand side endogenous variables sheds further light on the appropriateness of one
model specification over another. In the model where tour length affects vehicle type choice, the tour
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length variable is statistically insignificant in affecting the utility of all vehicle types. All three coefficients
are statistically insignificant. On the other hand, in the joint model where vehicle type choice affects
tour length, it is found that all three vehicle types have statistically significant coefficients, clearly
indicating that there is a significant joint relationship between vehicle type choice and tour length.
When faced with the choice between models in which one demonstrates a statistically significant
relationship between choice dimensions that are likely linked together from a behavioral perspective,
and another demonstrates no such relationship, it is reasonable to prefer the one depicting statistically
significant relationships unless the behavioral relationships represented in the model are completely
inconsistent with basic logic, past research, and known behavioral theories.

4.2. Influence of Tour Attributes

The constant terms in the joint model reveal that SUV and van vehicle types are preferred over cars for
HBNW tours. This result is reasonably consistent with what was observed in the descriptive analysis
where SUV and van were chosen more frequently compared to other body types when these vehicle
types existed in the fleet. Note that the other model specification where length affects vehicle type
provides results that are different and inconsistent with those found in the specification of Table 4. The
results in Table 4 show a slight baseline preference for SUV over van, whereas the results in Table 3
show a baseline preference for van over SUV. Thus, the choice of model specification can have an
important impact on inferences.

In addition to the impact of vehicle type choice on tour length, the effect of number of stops
and accompaniment type were also explored. One may contend that accompaniment and number of
stops are also endogenous tour attributes and that they should also be modeled along with vehicle type
choice and tour length. However, the modeling methodology employed in this paper can only
accommodate one continuous variable and one discrete choice variable in its current form. The
exploration of all four choice dimensions in an integrated joint modeling framework is left for a future
exercise. The number of stops on the tour appears to have a positive influence on the use of van,
presumably because these are more complex trip chains involving multiple passengers. The number of
stops also has a positive impact on tour length. Solo tours are more likely undertaken by car, consistent
with the notion that larger vehicle type may not be needed in the absence of multiple passengers. Solo
tours are also likely to be shorter tours in comparison to joint tours. This result is reasonable given that
joint tours may involve visiting destinations (that could be farther away, but more preferred) that satisfy
the preferences of multiple individuals on the journey. All three vehicle types have a positive impact on
tour length compared to the pickup truck (omitted base alternative). Among the three vehicle types
included in the model, the car and van are associated with longer tour lengths than the SUV. Thus it
appears that, whereas the SUV is more preferred for tour-making (see vehicle type choice model
component), the SUV is utilized (mileage driven) less — perhaps because drivers are making a conscious
decision to conserve on driving expense. As van tours tend to be more complex (multi-stop) and multi-
passenger in nature, it is not surprising that this vehicle type has the largest positive impact on tour
length. However, it should be noted that the vehicle type choice has an impact on tour length even
after controlling for other tour attributes.

It is also interesting to note the difference in the significance of the variables between the
independent models and the joint models. One can see that if the error correlations across choice
dimensions are ignored as is the case of the independent model, incorrect inferences may be drawn. For
example, the impact of van vehicle type on tour length is insignificant in the independent model, while
the same variable has a statistically significant impact on tour length after accounting for potential error
correlations. Not only is it statistically significant, but it is also the highest in magnitude. In general,
parameter estimates between the independent and joint model specifications are quite different. These
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observations lend credence to the need for jointly modeling activity-travel choices by accommodating
error correlations across choice dimensions.

4.3. Influence of Socioeconomic Attributes

A host of household and person level socioeconomic characteristics were included to account for their
impacts on vehicle type choice and tour length. The ratio of household size to vehicle count has a
negative impact on tour length, presumably because households with a greater ratio have a deficit of
vehicles. Individuals in such households may have to choose destinations that are closer to home (small
travel distances) so that they can return quickly and make the vehicle available to other members of the
household. Van is the least preferred vehicle type for males and the pickup truck (when it is in the fleet
of vehicles of a household) is the most preferred vehicle type. Males also have a tendency to engage in
longer tours compared to females. It is possible that females take care of household maintenance and
serve-child activities that are closer to home, contributing to shorter tour lengths as a whole. Older
individuals prefer using a van and engage in shorter tours. It is possible that these individuals prefer the
comfort and smooth drive of a van. In addition, these individuals may include grandparents who
undertake tours with family members. As the number of children in the household increases, people
have a propensity to use a larger vehicle (van) compared to the car. It is interesting to note that the
number of children has a negative effect on tour length. There are two plausible explanations for this
result. First, if the parents choose to leave a child at home, they may engage in shorter tours so that
they can be back home relatively quickly and tend to their kids. Alternatively, if the parents choose to
take their kids with them, they may still choose to engage in shorter tours for purposes of efficiency and
for avoiding long tours that can be tough on children. Households in non-urban areas are less likely to
use large vehicle types, but undertake tours of longer length. While the latter result is quite consistent
with expectations in that such households are probably farther away from desirable destinations, the
former result is somewhat surprising. It appears that these households prefer to use the car, possibly
for trips that do not involve hauling goods or people, or the pick-up truck, possibly for trips that do
involve hauling goods and/or people. People with flexible work start times engage in shorter tours
suggesting that they may be engaging in more frequent and shorter tours, consistent with the notion
that they are less time constrained than workers who do not have temporal flexibility in work start
times. The latter group must probably engage in fewer, but more efficient, multi-stop tours that are
inevitably longer in length.

In the case of the impact of socio-economic attributes on the endogenous variables, it is found
that there are substantive differences in coefficient estimates between the independent and joint model
specifications. Thus, accounting for error correlations is clearly important in the joint modeling of vehicle
type choice and tour length. However, differences in coefficient estimates between the two model
structures are less pronounced. Both the model where tour length affects vehicle type choice and the
model where vehicle type choice affects tour length provide very similar indications in terms of the
effects of socio-economic attributes on these choice dimensions.

5. CONCLUSIONS

Growing concerns about energy sustainability and greenhouse gas (GHG) emissions attributable to
vehicular travel has transportation modelers increasingly relying on disaggregate microsimulation
models of activity-travel choices to represent underlying behavioral relationships that influence how
people respond to alternative policy scenarios aimed at curbing vehicular use. In this context, two
choice dimensions of particular interest are the choice of vehicle (body type) and the distance traveled
to undertake activities distributed in time and space. As activity-travel microsimulation models are
increasingly considering the trip chain or tour as the unit of analysis, these choice dimensions are best
examined in the context of tours as opposed to individual unlinked trips.
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This paper aims to present a joint model system capable of representing the relationship
between tour length and the choice of vehicle (body type) for undertaking the tour. Two plausible
structural relationships between these two choice dimensions are considered. In the first, tour length
may impact vehicle type choice and in the second, vehicle type choice may affect tour length.

In order to examine the nature of the relationship between vehicle type choice and tour length,
this paper estimates a joint probit-based discrete-continuous model system that recognizes the
multinomial nature of the vehicle type choice and the continuous nature of the length dimension. The
paper extends the previous model formulation (Ye and Pendyala, 2009) to accommodate variable choice
sets. In addition, the paper presents a modified non-nested test that can be used to compare alternative
discrete-continuous model structures when choice sets vary across individuals. The simultaneous
equations model system is capable of accounting for error correlations that may exist across choice
dimensions, arising from the presence of common unobserved attributes that may affect both choice
variables.

Model estimation was conducted on a random sample of more than 6,500 tours drawn from the
2009 NHTS. As expected, it is found that the preferences with respect to choice of vehicle body type
vary according to the household vehicle fleet composition. In households where a SUV is present, it
tends to be the most preferred vehicle type; however, the tour length for this vehicle type tends to be
less than that of other vehicle types, suggesting that there is an important relationship between vehicle
type choice and tour length that should be modeled while accounting for variable choice sets across
observations.

Tour level models relating tour length and vehicle body type choice were estimated. The
application of the non-nested test showed that the structure in which vehicle type choice influenced
tour length (as opposed to the one where tour length affected vehicle type choice) performed
statistically significantly better. Moreover, the coefficients of the vehicle type choice variables were
found to be statistically significant in the tour length equation, suggesting that vehicle type choice has a
significant impact on tour length. This lends credence to the behavioral paradigm in which vehicle type
choice is a higher level household decision process wherein different household members are allocated
vehicles among the fleet a priori. Then, the tour length undertaken by individuals is dependent on the
vehicle type that has been allocated to each of them. Indeed, vehicle ownership and allocation
processes may be viewed as longer term choice decisions that occur at the household level, and tour
length may be viewed as a shorter term choice decision that occurs at the individual tour level. In
general, it appears that vans are associated with longer trip lengths, followed respectively by cars, SUVs,
and pick-up trucks. This significance is found even after accounting for the fact that van trips may be
multi-passenger multi-stop journeys that are likely to be longer. A comparison of coefficients across
model specifications shows that the independent models which do not account for error correlations
across choice dimensions offer substantively different coefficient estimates and statistical significance
than the joint model specifications that account for error correlations.

Among the three error correlations estimated, the one representing error covariance between
van choice and tour length choice is found to be statistically significant. The correlation is found to be
negative. What this means is that the unobserved attributes that make one positively inclined to choose
the van as the vehicle type choice negatively impact tour length. This is consistent with expectations.
Suppose an individual in a household has more household maintenance and serve-child obligations than
another household member. Then, this household member may be more inclined to choose the van as
their vehicle of choice as it is convenient to haul people and goods and is comfortable. However, this
individual may also be inclined to choose destinations close to home for non-work activities, thus
choosing to undertake tours of shorter length. This is because the same factors that made an individual
choose the van (household obligations, serve children, desire for comfort) also contribute to the
individual choosing to undertake shorter tours because such an individual is time-constrained. Such
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considerations are critical to the correct specification of multi-dimensional choice models of activity-
travel demand.

From a policy perspective, the finding that vehicle type choice affects tour length has important
implications. Suppose the government offers rebates, tax incentives, and other price breaks that induce
individuals to purchase smaller fuel efficient vehicles. The idea behind offering such incentives is that
energy consumption and greenhouse gas (GHG) emissions can be reduced by motivating people to
acquire and drive such vehicles. However, the joint model considered most appropriate in this study
shows that tours undertaken by cars are likely to be of longer length than tours undertaken by SUV and
pick-up trucks and only marginally shorter than van tours. In other words, any gains in energy and
environmental sustainability garnered through the increased acquisition of smaller cars may, at least in
part, be negated or offset by the longer tour lengths (and therefore miles of travel) undertaken by these
vehicles. It appears that individuals, even after controlling for a range of other attributes, may be
consciously exercising trade-offs in their utilization of vehicles. Thus, joint models of the type presented
in this paper can have important implications in terms of the policy impacts estimated for a variety of
public policy scenarios. Future research in this area should attempt to treat other tour attributes such
as accompaniment type and number of stops as endogenous variables in a multidimensional integrated
choice modeling framework.
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1  TABLE 1 Sample Descriptive Statistics

Std.
Variable Description Mean Deviation
Tour-level
Number of passengers/tour 1.7 0.9
Number of trips/tour 2.7 1.2
Number of stops/tour 1.7 1.2
Travel travel duration/tour 37.0 29.7
Travel travel distance/tour 15.7 14.4
Household-level
Household size 3.1 1.3
Household vehicle ownership 2.8 1.1
Number of adults 2.3 0.7
Number of children 0.8 1.1
Percentage of households in non-urban area 30% 0.5
Percentage of households with income less than $40K 20% 0.4
Person-level
Percentage of males 50% 0.5
Percentage of people less than 18 years old 10% 0.2
Percentage of people 65 or older 30% 0.4
Percentage of people with some level of college education 70% 0.5

16
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1  TABLE 2 Tour Characteristics by Vehicle Type Chosen for the Tour

Household Vehicle . Number of  Number
Fleet Composition by Frequency vehicle Body Type T(?ur T.our Travel passengers  of Stops
Body Type Selected for Tour Distance Time on Tour on Tour
Average Tour Attributes (Not Considering Vehicle Fleet Composition)
2716 Car 16.0 37.7 1.6 1.6
911 Van 15.2 37.0 2.1 1.8
1647 SUvV 15.4 36.0 1.8 1.7
1204 Pickup 15.6 36.5 1.5 1.6
Average Tour Attributes (Considering Vehicle Fleet Composition)
SUV, Pickup 412 SUV 17.0 37.4 1.9 1.8
SUV, Pickup 221 Pickup 15.6 37.4 1.5 1.6
Van, Pickup 169 Van 14.4 35.9 2.0 1.8
Van, Pickup 111 Pickup 15.9 37.5 1.4 1.7
Van, SUV 100 Van 17.2 39.6 2.1 1.7
Van, SUV 76 SUv 16.4 40.3 1.7 1.7
Van, SUV, Pickup 28 Van 15.4 31.9 1.9 1.3
Van, SUV, Pickup 31 SUv 17.9 38.4 1.9 1.6
Van, SUV, Pickup 12 Pickup 17.4 61.4 1.3 1.3
Car, Pickup 1204 Car 17.1 39.3 1.6 1.7
Car, Pickup 662 Pickup 15.4 35.8 1.5 1.6
Car, SUV 767 Car 14.3 36.1 1.5 1.6
Car, SUV 824 SUV 14.1 34.3 1.7 1.6
Car, SUV, Pickup 196 Car 16.6 36.9 1.6 1.6
Car, SUV, Pickup 241 SUV 16.0 37.4 1.7 1.7
Car, SUV, Pickup 137 Pickup 16.9 36.9 1.4 1.6
Car, Van 392 Car 15.2 36.5 1.7 1.6
Car, Van 450 Van 15.0 37.5 2.1 1.8
Car, Van, Pickup 99 Car 15.8 35.6 1.6 1.5
Car, Van, Pickup 102 Van 17.0 38.9 2.1 1.9
Car, Van, Pickup 51 Pickup 14.0 335 1.6 1.4
Car, Van, SUV 47 Car 17.2 41.2 15 1.6
Car, Van, SUV 50 Van 11.1 28.8 1.8 1.6
Car, Van, SUV 46 SUV 15.4 36.4 1.5 1.9
Car, Van, SUV, Pickup 11 Car 20.3 42.4 1.6 1.6
Car, Van, SUV, Pickup 12 Van 21.7 43.8 2.3 1.8
Car, Van, SUV, Pickup 17 SUV 18.3 40.4 2.1 1.9

Car, Van, SUV, Pickup 10 Pickup 15.0 33.6 1.4 1.6
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TABLE 3 Estimation results for the model specification where tour length affects vehicle type choice

Independent Vehicle Type Choice Model Independent Joint Vehicle Type Choice Model

Joint Tour

Tour Length

Length Model

Car Van SUV Model Car Van SUV
Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat
Constant 1.686 13.3 2.077 10.8 1.957 13.7 1.913 36.3 1.259 6.5 1.960 4.6 1.456 6.5 1.921 35.9
Tour Attributes
Log of tour length in miles  0.076 2.0 -0.054 -0.9 0.052 1.1 0.093 1.3 -0.191 -1.0 0.089 1.0
More than one stop 0.294 2.6 0.793 32.4 0.390 2.3 0.793 325
Solo tour -0.381 -4.5 -0.921 -7.2 -0.670 -6.8 -0.063 -1.8 -0.267 -3.7 -0.763 -6.8 -0.510 -6.1 -0.065 -1.8
Joint tour 0.235 6.7 0.232 6.6
Socio-economic Attributes
Ratio of household to
. -0.061 -1.8 -0.067 -2.0
number of vehicles
Male -1.825 -21.1 -2.287 -183 -1.910 -189 0.047 2.0 -1.474 -21.4 -1.839 -17.8 -1.538 -18.9 0.047 2.0
Age 65 years or older 0.221 1.6 -0.061 -2.1 0.170 1.5 -0.061 -2.1
Number of children -0.089 -2.7 0.141 2.9 -0.058 -3.4 -0.073 -2.5 0.104 2.4 -0.056 -3.2
Household in non-urban
-0.197 -2.4 0.452 17.8 -0.192 -2.4 0.452 17.8
area
Education level (atleast
0.048 1.9 0.046 1.8
college)
Can change start time of
. . . -0.103 -3.1 -0.099 -3.0
fixed activities
Household income less
-0.066 -2.2 -0.066 -2.2

than 40k per year

Log-likelihood at convergence = -13151.8; y;,=-0.040(-0.6); y:n=

Log-likelihood at - -13141.4
og-likelihood at convergence 0.120(0.7); 75n=-0.057(-0.7); yan=0(-); o'n= 0.925 (40.2)
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TABLE 4 Estimation results for the model specification where vehicle type choice affects tour length
Independent Vehicle Type Choice Model Independent Joint Vehicle Type Choice Model Joint Tour

Tour Length

Length Model

Car Van SuUvV Model Car Van SUV
Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat Coef t-stat  Coef t-stat
Constant 22.2 2.045 14.5 2.091 22.3 1.853 30.8 1.491 23.3 1.625 14.2 1.674 23.2 1.794 24.2
Tour Attributes
Vehicle Type is Car 0.079 2.3 0.143 2.1
Vehicle Type is Van 0.042 1.0 0.174 2.5
Vehicle Type is SUV 0.044 1.2 0.099 1.6
More than one stop 0.200 1.9 0.793 324 0.186 2.1 0.792 324
Solo tour -4.8 -0.917 -7.2 -0.684 -7.0 -0.061 -1.7 -0.290 -4.2 -0.728 -6.9 -0.533 -6.6 -0.055 -1.5
Joint tour 0.234 6.7 0.234 6.7
Socio-economic Attributes
Ratio of household to
. -0.058 -1.7 -0.064 -1.9
number of vehicles
Male 211 -2.289 -18.3 -1.905 -18.9 0.060 2.4 -1.474 -21.4 -1.858 -18.2 -1.537 -189 0.077 2.8
Age 65 years or older 0231 1.7 -0.061 2.1 0.185 1.6 -0.064  -2.2
Number of children 2.8 0146 3.0 -0.058 -33  -0077 -28 0125 3.1 -0.061  -35
Household in hon-
-0.227 -2.0 -0.214 -2.6 0.456 17.9 -0.179 -1.9 -0.190 -2.7 0.461 18.0
urban area
Education level (atleast
0.047 1.8 0.045 1.8
college)
Can change start time
. e -0.105 -3.1 -0.108 -3.2
of fixed activities
Household income less
-0.066 -2.2 -0.064 -2.1

than $40k per year

Log-likelihood at convergence =-13140.5

Log-likelihood at convergence =-13148.3; y;,=-0.068(-1.1);

Yon=-0.180(-2.6); y3n=-0.051(-0.8); yan=0(-); o’'=0.914 (46.9)




